
Knowledge Advisor

Preface

Using this Guide

What's New?

Getting Started

Using Parameters
Using Formulas
Using Rules
Using Checks

Basic Tasks

Working with Parameters
Introducing Parameters
Creating a Parameter
Copy/Pasting Parameters
Specifying the Material Parameter
Specifying a Parameter Value as a Measure
Importing Parameters
Creating Points, Lines... as Parameters
Applying Ranges to Parameters
Activating and Deactivating a Component
Creating an Associative Link between Measures and Parameters
Using Relations based on Publications at the Product Level
Publishing Parameters
Getting Familiar with the Parameters Explorer
Adding a Parameter to a Feature
Adding a Parameter to an Edge
Creating Sets of Parameters
Parameters: Useful Tips

Working with Formulas
Introducing Formulas
Getting Familiar With the f(x) Dialog Box
Using the Dictionary

Constants
Design Table Methods
Operators
Point Constructors
Evaluate Method
Line Constructors
Circle Constructors
List

Measures
Surface Constructors
Wireframe Constructors
Part Measures
Plane Constructors
Analysis Operators
Mathematical Functions

Creating a Formula
Specifying a Measure in a Formula
Referring to External Parameters in a Formula
Using the Equivalent Dimensions Feature
Formulas: Useful Tips

Working with the Check Feature
Creating a Check
Performing a Global Analysis of Checks

Using the Check Analysis Tool
Introducing the Default Check Report
Customizing Check Reports

Using the Check Editor
Working with the Rule Feature

Creating a Rule
Using Rules and Checks in a PowerCopy
Creating Sets of Relations
Updating Relations Using Measures
Instantiating Relations From a Catalog
Using the Rule Editor

Using the Knowledgeware Language
Writing Rules & Checks - Overview
Comments
Object Methods

Attributes
AttributeType Method
AbsoluteId Method
GetAttributeBoolean Method
GetAttributeInteger Method
GetAttributeReal Method
GetAttributeString Method
HasAttribute Method
Id Method
IsSupporting
Name Method
IsOwnedBy Method
IsOwnedByString Method
Query
SetAttributeBoolean Method
SetAttributeInteger Method
SetAttributeReal Method
SetAttributeString Method

Messages and macros
LaunchMacroFromDoc Function

LaunchMacroFromFile Function
VBScriptRun
Message Function
Question Function

Temporary variables
Units
Operators
Constants

Useful Tips

Advanced Tasks

Working with Advanced Knowledge Advisor Relations
Creating and Using a Knowledge Advisor Law
Associating URLs and Comments with Parameters or Relations
Launching a VB macro with Argument
Solving a Set of Equations
Using the Equation Editor

Working with Design Tables
About the Design Table
Getting Familiar with the Design Table Dialog Box
Creating a Design Table from Current Values
Creating a Design Table from a Pre-Existing File
Interactively Adding a Row to a Design Table External File
Controlling Design Tables Synchronization
Storing a Design Table in a Catalog
Using Functions related to a Design Table in a Formula
Storing a Design Table in a PowerCopy
Design Tables: Useful Tips

Using the Knowledge Inspector
What If Mode
How To Mode

Working with the List Feature
Using the List Feature
Using the List Edition Window

Working with the Reaction Feature
Using the Reaction Window
Creating a Reaction: DragAndDrop Event
Creating a Reaction: Insert Event
Creating a Reaction: Inserted Event
Creating a Reaction: Remove Event
Creating a Reaction: BeforeUpdate Event
Creating a Reaction: ValueChange Event
Using a Reaction with a User Feature: Instantiation Event
Using a Knowledge Advisor Reaction with a Document Template: Instantiation Event
Creating a Reaction: Update Event
Creating a Reaction: File Content Modification Event

Working with the Loop Feature
Introducing the Loop Feature
Getting Familiar with the Loop Edition Window
Creating a Loop: Roadmap

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugdesigntable0011.htm
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugdesigntable0012.htm

Declaring Input Data
Defining the Context
Using the Scripting Language

Action Script Structure
Object Properties
Keywords
Variables
Operators
Using the Get... Commands
Comments
Limitations

Creating a Loop
Creating a PowerCopy containing a Loop
Loop Feature: Useful Tips

Using the Knowledge Advisor Action Feature
Use Cases

The Ball Bearing
Before you Start
Step-by-Step

The System of Three Equations in Three Variables

Reference

Basic Wireframe Package
GSMLine Object
GSMCircle Object
GSMPlane Object
GSMPoint Object

Part Design
Box Object
Chamfer Object
Cone Object
Counterbored Hole Object
Counterdrilled Hole Object
Countersunk Hole Object
Cylinder Object
Hole Object
Pad Object
Shaft Object
Shell Object
Simple Hole Object
Sphere Object
ThickSurface Object
Torus Object
Part Design

Part Shared Package
ConstantEdgeFillet Object
Fillet Object
Pattern Object

Standard Package
GSD Shared Package

GSD Package
GSMAssembleObject
GSMCurve Object
GSMCurvePar Object
GSMDirection Object
GSMExtrude Object
GSMFill Object
GSMFillet Object
GSMIntersect Object
GSMLoft Object
GSMProject Object
GSMSplit Object
GSMSweep Object

Knowledge Expert
Knowledge Expert Rule Bases Object
Knowledge Expert Rule Bases Object
Knowledge Expert Rule Sets Object

Mechanical Modeler
Body Object

Workbench Description

Glossary

Index

Preface
CATIA - KNOWLEDGE ADVISOR is a CATIA product which allows users to embed knowledge within design and
leverage it to assist in engineering decisions, in order to reduce errors or automate design, for maximum
productivity.

Users can embed knowledge in design such as formulas, rules and checks and leverage it when required at any
time. Knowledge is then taken into account and acts according to its definition. Its meaning is also accessible:
For example a check intent can highlight the parameters involved in a verification, it is easy and immediate to
understand in what way a standard has been violated.

In short, Knowledge Advisor enables users to:

● Capture corporate engineering knowledge as embedded specifications allowing complete consistency.

● Easily define and share know-how among all users.

● Automate product definition.

● Ensure compliance with corporate standard.

● Increase productivity.

● Increase Knowledge management for sharing and understanding intents.

● Build Knowledge components management for customization and reuse.

● Allow early attention to final design specifications preventing costly redesigns.

● Guide and assist users through their design tasks.

Using this Guide
Conventions

file:///E|/www/meidocr12/Doc/online/icons_C2/conventions.htm

Using this Guide
This User's Guide is intended to help users become quickly familiar and efficient with the CATIA Version 5
Knowledge Advisor. Before reading it, users should be familiar with the basic CATIA Version 5 concepts, such as
the document windows, standard toolbars and menus.

To get the most out of this guide, it is highly recommended to start reading and performing the tasks described
in the step-by-step tutorial, known as the Getting Started section and reading the Workbench Description to find
his way around the Knowledge Advisor Workbench.

This User's Guide is organized into the following sections:

● Preface: A short introduction to the product.

● What's new: A presentation of the new product functions.

● Getting Started: A step-by-step tutorial.

● Basic Tasks: A presentation of the most common tasks.

● Advanced Tasks: A presentation of more advanced product functions.

● Workbench Description: A presentation of the user interface.

● Use Cases: Use samples.

● Glossary: A list of terms specific to Knowledge Advisor.

[]

What's New?
This table identifies what new or improved capabilities have been documented in the Version 5 Release 12 of
Knowledge Advisor User's Guide.

Enhanced Functionalities

Loop Feature
The Loop edition window was enhanced.

Creating a Loop
This task explains how to create a loop using the enhanced loop edition window.

New Functionality

Creating a PowerCopy containing a Loop
This task explains how to create a powercopy containing a loop and how to instantiate it into another
document.

Getting Started

Before getting into the details for using CATIA - Knowledge Advisor Version 5, this section provides a step-by-
step scenario demonstrating how to use Knowledge Advisor key functionalities. You should be familiar with the
basic commands common to all workbenches. These are described in the Infrastructure User's Guide.

When working in a Japanese environment, remember to check the Surrounded by the Symbol'
option (Tools->Options->General->Parameters and Measure->Knowledge tab).

Using Parameters
Using Formulas

Using Rules
Using Checks

Using Parameters

This task explains how to use parameters. For a fuller outline of the parameters-related tasks, see the Knowledgeware
Infrastructure - Tips and Techniques - Summary dedicated to the knowledgeware infrastructure capabilities.

Check the settings below:

● From the Tools menu, select Options->General->Parameters and Measure.

● In the Knowledge tab, check the With Value and With Formula check boxes,
and click OK.

When working in a Japanese environment, check the Surrounded by the
symbol' check box under Parameter names.

● From the Tools menu, select Tools->Options...->Infrastructure->Part
Infrastructure.

● Check at least the Relations and Parameters boxes in the Display tab, and click
OK.

It is recommended to check all the options located below the Specification tree
settings.

1. Open the KwrStartDocument.CATPart document.

If you expand the Parameters node in the

specification tree, the Material parameter is the

only one displayed.

At this stage of the scenario, don't pay any

attention to this default parameter.

The Relations node can't be

expanded as there is no default

relation in a CATIA document.

2. Click the icon. The Formulas dialog box is displayed.

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugat3002.htm
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugat3002.htm
file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrStartDocument.CATPart

3. In the New Parameter of type scrolling list, select the Length type, then click the New Parameter of type button.

4. In the Edit name or value of the current parameter field, replace the Length.1 string with PadLength, and click Apply.

A new parameter is added to the document parameter list both in the Formulas dialog box and in the specification tree.

You have just created a user parameter.

5. Click OK in the Formulas dialog box to terminate the dialog. Keep your document open and proceed to the next task.

Using Formulas

This task explains how a parameter can be constrained by a formula.
See the Knowledgeware Infrastructure - Tips and Techniques - Summary dedicated to the
infrastructure knowledgeware capabilities for more information on formulas.

1. Click the icon. The Formulas dialog box is displayed.

2. In the parameter list, select the PartBody\Sketch.1\Radius.1\Radius item, then click Add

Formula. The Formula editor displays.

The icon located on the right is simply a rubber you can use to erase the formula.

3. Enter the 2 * PartBody\Hole.1\Diameter relation.

4. Click OK in the Formula Editor once you have typed your relation. The Formula.1 relation is

added to the specification tree.

In the parameter list of the dialog box, a formula is now associated with the pad radius.

5. In the parameter list, select the PadLength item, click Add Formula to create the formula

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugat3002.htm

below:

PadLength = PartBody\Pad.1\FirstLimit\Length + PartBody\Pad.1\SecondLimit\Length

In the parameter list, the Formula.2 relation is now associated with the PadLength user

parameter. In the specification tree, PadLength is also displayed with the value resulting from

Formula.2.

6. Click OK twice in the Formulas dialog box to terminate this task. Keep your document open and

proceed to the next task. This is now what you should see in the specification tree under

"Relations":

[]

Using Rules

This task introduces the Knowledge Advisor rules.
Unlike the parameter and formula capabilities which are available to all CATIA users, the rule
and check capabilities require the Knowledge Advisor product.

For more information about Rules, see Working with the Rule Feature.
To know more about the Rule Editor, see Using the Rule Editor.

1. Select the KwrStartDocument item in the specification tree

2. Access the Knowledge Advisor workbench from the Start->Knowledgeware menu.

3. Click the rule icon. The following dialog box is displayed:

The dialog box fields display default values that can be modified:

a - The rule name: Rule.i. The first rule created in a document is Rule.1 by default.

This name is the one displayed in the specification tree unless you modify the default

name at creation.

b - The user and the date of creation.

c - The destination, i.e. the feature you are going to add the rule to. By default, in this

scenario, the destination is the Relations feature (the Relations node in the specification

tree). But a rule could be added to another feature, then only apply to this feature.

4. Replace the Rule.1 string with Cylinder_Rule, if need be modify the comments but don't

modify the destination. Click OK. The Rule Editor is displayed (see below).

5. Type the code below into the edition box or copy/paste it from your browser to the

edition box.

PartBody\Hole.1\Activity = true
if PadLength <= 50mm and PadLength > 20mm
{
PartBody\Hole.1\Diameter = 20mm
Message("PadLength is: # | Internal Diameter is: #",
PadLength,PartBody\Hole.1\Diameter)
}
else if PadLength > 50mm and PadLength < 100mm
{
PartBody\Hole.1\Diameter = 50mm
Message("PadLength is: # | Internal Diameter is: #",
PadLength,PartBody\Hole.1\Diameter)
}
else if PadLength >= 100mm
{
PartBody\Hole.1\Diameter = 80mm
Message("PadLength is: # | Internal Diameter is: #",
PadLength,PartBody\Hole.1\Diameter)
}
else
{
PartBody\Hole.1\Activity = false
Message("PadLength is: # | Internal Diameter is: #",
PadLength,PartBody\Hole.1\Diameter)
}

Users working in a Japanese environment should use the script below:

`PartBody\Hole.1\Activity` = true
if `PadLength` <= 50mm and `PadLength` > 20mm
{
`PartBody\Hole.1\Diameter` = 20mm
Message("PadLength is: # | Internal Diameter is: #",
`PadLength`,`PartBody\Hole.1\Diameter`)
}
else if `PadLength` > 50mm and `PadLength` < 100mm
{
`PartBody\Hole.1\Diameter` = 50mm
Message("PadLength is: # | Internal Diameter is: #",
`PadLength`,`PartBody\Hole.1\Diameter`)
}
else if `PadLength` >= 100mm
{
`PartBody\Hole.1\Diameter` = 80mm
Message("PadLength is: # | Internal Diameter is: #",

`PadLength`,`PartBody\Hole.1\Diameter`)
}
else
{
`PartBody\Hole.1\Activity` = false
Message("PadLength is: # | Internal Diameter is: #",
`PadLength`,`PartBody\Hole.1\Diameter`)
}

6. Click Apply. An information window displays the PadLength and Pad internal diameter

values. Click OK in the Information window. The Cylinder_Rule relation is added to the

specification tree.

7. Click OK to terminate this part of the dialog. Keep your document open and proceed to

the next task.

[

Using Checks

This task explains how to create a check and what happens when you add a check to a document.
The Knowledge Advisor product is required for this task.
See the Rule and Check Tasks for more information on check-related tasks.

1. Click the icon. The first "Check Editor" dialog box is displayed.

2. Replace the Check.1 default name with Cylinder_Check, then click OK. The Check Editor

box is displayed. It is similar to the Rule Editor. The Incremental box must be unckecked.

3. Select the Information item in the Type of Check list.

4. Enter a string in the message field (for example: Pad too short). This message is to be

displayed whenever the statement specified by the check is not fulfilled.

5. Enter the following statement into the edition box: PadLength > 20mm

6. Click OK to confirm the check creation. The Cylinder_Check relation is added to the

specification tree. A green icon in the specification tree means that the check is fulfilled. No

message is displayed.

file:///E|/www/meidocr12/Doc/online/kwrug_C2/kwrugat0001.htm

7. Change the Pad limits so that PadLength <= 20mm. The Cylinder_Rule relation is re-applied.

An information window displays the new PadLength and Pad internal diameter values. Then,

you are warned by another window ("Pad too short") that the check is no longer valid. The

check icon in the specification tree turns to red.

Basic Tasks

Refer to the Quick Reference of Tasks for a comprehensive list of interactions to be carried out on
rules and checks. See also the Tips and Tricks section.

The table below lists the information you will find in this section

Working with Parameters
● Introducing Parameters

● Creating a Parameter

● Copy/Pasting Parameters

● Specifying a Parameter Value as a Measure

● Importing Parameters

● Specifying the Material Parameter

● Creating Points, Lines... as Parameters

● Activating and Deactivating a Component

● Using Relations based on Publications at the Product Level

● Creating an Associative Link between Measures and Parameters

● Publishing Parameters

● Adding a Parameter to a Feature

● Adding a Parameter to an Edge

● Creating Sets of Parameters

● Parameters: Useful Tips

Working with Formulas
● Introducing Formulas

● Getting Familiar With the f(x) Dialog Box

● Using the Dictionary

● Creating a Formula

● Specifying a Measure in a Formula

● Referring to External Parameters in a Formula

file:///E|/www/meidocr12/Doc/online/kwrug_C2/kwrugat0001.htm
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugat1013.htm

Working with the Rule
Feature

● Creating a Rule

● Using the Rule Editor

● Instantiating Relations from a Catalog

● Using Rules and Checks in a Power Copy

● Creating Sets of Relations

● Updating Relations Using Measures

● Using the Dictionary

Working with the Check
Feature

● Creating a Check

● Using the Check Editor

● Performing a Global Analysis of Checks

● Customizing Check Reports

● Using the Check Analysis Tool

● Using Rules and Checks in a Power Copy

● Creating Sets of Relations

● Updating Relations using Measures

● Using the Dictionary

Using the Knowledgeware
Language

● Writing Formulas, Rules & Checks

● Constants

● Comments

● Temporary Variables

● Units

● Operators

● Object Methods

Working with Parameters
Introducing Parameters
Creating a Parameter

Copy/Pasting Parameters
Specifying a Parameter Value as a Measure

Importing Parameters
Specifying the Material Parameter

Creating Points, Lines... as Parameters
Applying Ranges to Parameters by Using a Rule

Using Relations based on Publications at the Product Level
Creating an Associative Link between Measures and Parameters

Publishing Parameters
Getting Familiar with the Parameters Explorer

Adding a Parameter to a Feature
Adding a Parameter to an Edge

Creating Sets of Parameters
Parameters: Useful Tips

[

Introducing Parameters
When you create a part like the hollow cylinder of our "Getting Started" example, you often start by creating a
sketch, then you create a pad by extruding the initial sketch, then you add other features to the created pad.
The final document is made up of features which define the intrinsic properties of the document. Removing one
of these features results in a modification of the document. These features are called parameters. Parameters
play a prominent role in knowledgeware applications. They are features that can be constrained by relations and
they can also be used as the arguments of a relation.

In addition to these parameters, CATIA allows you to create user parameters. These user parameters are
extra pieces of information added to a document.

User parameters are very handy in knowledgeware applications:

● They can be used to add specific information to a document

● They can be defined or constrained by relations

● They can be used as the arguments of a relation.

Parameters are created clicking one of the following icons:

The parameters are created using the Formulas Editor. To know more about this editor, see Getting
Familiar With the f(x) Dialog Box.

The parameters are created using the Parameters Explorer Editor. To know more about this editor, see
Getting Familiar with the Parameters Explorer.

The created parameters only apply to edges, faces and vertex. The editor is similar to the Parameters
Explorer editor.

The Set of Parameters enables the user to gather user parameters below a set.

A given relation may take as its arguments both types of parameters (intrinsic and user).

For the parameters to display in the specification tree, check the settings below:

● From the Tools menu, select Options->General->Parameters and
Measure.

● In the Knowledge tab, check the With Value and With Formula
check boxes, and click OK if you want the parameters to display
their values and associated formulas (if any.)

When working in a Japanese environment, check the
Surrounded by the symbol' check box under Parameter names.

● From the Tools menu, select Tools->Options...->Infrastructure-
>Part Infrastructure

● Check at least the Relations and Parameters boxes in the Display
tab, and click OK.

[

Creating a Parameter

This task explains how to create a Time type parameter and assign a value to it.

1. Open the KwrStartDocument.CATPart document.

2. Click the icon. The f(x) dialog box is displayed.

3. Select the Time item with Single Value in the New Parameter of type list, then click

New Parameter of type. The new parameter appears in the Edit name or value of the

current parameter field.

4. Replace the Time.1 name with Machining_Time and assign the 1000s value to this

parameter. Then click Apply. The Machining_Time parameter is added to the

specification tree. The dialog box is modified as follows:

5. Click OK when done to close the dialog box.

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrStartDocument.CATPart

● You can add properties to a .CATPart or a .CATProduct document by using the
Properties command from the contextual menu. You just have to click the Define
other properties... button in the Product tab then click New parameter of type. The
dialog is similar to the f(x) dialog. See the Product Structure User's Guide for more
information. The properties you define that way are also displayed in the parameter
list of the f(x) dialog box.

● You can specify that a parameter is constant by using the Properties command from
the contextual menu. This command also enables you to hide a parameter.

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugat3003.htm
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugparameters0000.htm

Copy/Pasting Parameters
The Tools->Options->General->Parameters and Measure check boxes allow you to:

● Paste a parameter without the formula which defines it.

For example:
Holeplus= 15 = Diameter + 10 will be pasted as Real.i = 15
 (if the With Value box is checked)

● Paste a parameter as well as the formula which defines it, but only if the parameters referred to in

the formula are also selected in the copy.
For example:
Holeplus= 15 = Diameter + 10 will be pasted as Real.i = 15 if the Diameter parameter does not
belong to the items selected for the copy
but HolePlus will be pasted as Real.i = 15 = Real.j + 10 if Diameter is selected in the copy (use
multi-selection).

● Paste a parameter as well as the formula.

Holeplus= 15 = Diameter + 10 will be pasted as Real.i = Diameter + 10

When copying parameters sets containing hidden parameters, these parameters are automatically
pasted when pasting the parameters sets and appear as hidden parameters.

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugparameters0000.htm

Specifying the Material Parameter

Whatever your document, the Material parameter is always displayed in the specification tree. By
default, its value is set to None. The Mechanical_Property features are calculated from the Material
value. Specify a material to set the values of the Mechanical_Property features.

1. Open the KwrStartDocument.CATPart document.

The Material parameter is displayed by default

in the specification tree. Its value is set to

None.

2. Double-click the Material feature in the specification tree to edit the parameter. The dialog

box below is displayed.

3. Click OK and select the root feature in the specification tree.

4. Click the icon in the standard toolbar to display the available material library. Select

the Metal->Iron material.

5. Click Apply Material and OK.

This is what you should see now in the specification tree. The

Iron feature is added to the specification tree and a new

material is added under the Parameters node.

Remember: To display parameter values, check

Tools->Options->General->Knowledge->Parameters and Measure->With value.

6. Keep your document open and proceed to the next task.

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrStartDocument.CATPart

Valuating the Mechanical Property Parameters

Once the Material value has been specified, the Mechanical_Property parameters are automatically
updated when the Properties option is selected in the contextual menu.

1. Select the root item in the specification tree and open the Properties dialog box from the

contextual menu.

2. Select the Mass tab. The document mechanical properties have been updated from the

value assigned to the Material parameter.

3. Click OK to go back to your document.

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugparameters0000.htm

Specifying a Parameter Value as a Measure

This scenario shows how to assign a value to a parameter deducing it from a graphic selection. In this scenario, the user
deduces the value assigned to the Thickness parameter by selecting 2 circular edges.

A common way to assign a value to a parameter is to use the Edit name or value of the current parameter field of the
Formulas dialog box. But there is another way to proceed. The value you assign to a parameter can be deduced from a
graphic selection.

1. In Tools->Options->General->Parameters and Measure, check the Load extended language libraries box

of the Language tab.

2. Open the KwrStartDocument.CATPart document.

3. Click the icon. The f(x) dialog box is displayed.

4. Select the Length item with Single Value in the New Parameter of type list, then click New Parameter of

type.

The new parameter appears in Edit name or value of the current parameter.

5. Replace the Length.1 name with Thickness, then right-click in the value field of Edit name or value of the

current parameter.

6. Select the Measure Between... command from the contextual menu. The Measure Between dialog box is

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrStartDocument.CATPart

displayed. Select Edge only as Selection 1 mode and Edge only as Selection 2 mode.

7. In the document geometry area, select successively one of the inner circular edge of the part, then the outer

circular edge located on the same face. The 17.5 mm value is displayed in the Measure Between dialog box.

8. Click OK when done in the Measure Between dialog box. The 17.5 mm value is displays in the Formulas dialog box.

9. Click OK to close the Formulas dialog box.

The parameter displays below the Measure node in the specification tree and below the
Parameters node.

To edit this parameter, proceed as follows:

● Double-click it in the specification tree. The Edit Parameters dialog box displays.

● Click the icon located next to the value field. The Measure between dialog box
displays.

● Edit the parameter and click OK when done.

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugparameters0000.htm

Importing Parameters

This scenario shows how to import parameters from an excel or a .txt file into a CATPart
document.

● Parameters and parameter values can be imported from a text file or from an Excel file
(Windows).

● If imported parameters already exist in the document, the import process automatically
updates the document.

Please find below the formatting rules the external file should comply with:
● Column 1

Parameter names

● Column 2
Parameter values. Multiple values are allowed. Values should then be separated by a ";". The
imported value is the one delimited by the "<" and ">" tags. Use the Tab key to skip from one
column to the other in a tabulated text file.

● Column 3
Formula. If no formula is specified, the third column should be left empty. In a tabulated text
file, just press the Tab key twice from column 2 to leave column 3 empty.

● Column 4
Optional comment.

1. Open the KwrStartDocument.CATPart document.

2. Click the icon. The f(x) dialog box is displayed.

3. Click Import.... A file selection dialog box is displayed.

4. Select the ExCompanyFile0.xls file (Windows only) or the TxCompanyFile0.txt file, then

click Open.

The list of parameters to be imported into the KwrStartDocument.CATPart document is

displayed.

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrStartDocument.CATPart
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/ExCompanyFile0.xls
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/TxCompanyFile0.txt

5. Click OK to import the parameters from the input file into the KwrStartDocument.CATPart

document.

The imported parameters are now displayed in the parameter list of the f(x) dialog box

and in the specification tree.

6. Click OK to terminate the dialog.

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugparameters0000.htm

Creating Points, Lines... as Parameters

The scenario below explains how to determine the position of the inertia axis of a pad. To do
so, start from a pad, then:

1. Create a line by using either method ('datum' or)
2. Use the inertiaAxis line constructor to specify that this line is to be the inertia axis of the

pad.
3. Retrieve the coordinate of the point located at the intersection of the inertia axis and

the pad extrusion plane.

To create elements such as Points, Lines, Curves, Surfaces, Planes or Circles and use them in
knowledgeware relations, you can:

● Create these elements as 'Isolate' elements in the Generative Shape Design workbench.

'Isolate' elements also called Datum are elements that have no link to the other entities

that were used to create them. For information on 'Datum' type elements, see the

Generative Shape Design User's Guide.

● Create these elements by using the f(x) capabilities and select the right type of element in

the New parameter of type list.

1. Access the Part Design workbench, create any sketch in the yz plane, then extrude this

sketch to create a pad. If need be, refer to the Part Design User's Guide.

2. Create a line intended to be used as an inertia axis afterwards.

3. To do so, click the Formulas icon , select the Line item in New Parameter of type, then

click New Parameter of type.

4. Click the Formulas icon. In the parameter list, select the line you have just created

(Open_body.1\Line.1).

5. Click Add Formula and add the formula below in the editor:

Open_body.1\Line.1 = inertiaAxis(3,PartBody)

The inertiaAxis function is accessible through the Line constructors. The axis number 3

is the one which is in the extrusion direction (normal to yz). Click OK in the Formulas

dialog box. The inertia axis is displayed in the geometry area.

6. Back to . Create three length type parameters: X, Y and Z.

7. Retrieve the coordinates of the point located at the intersection of the inertia axis and

the 'yz plane'. To do so, create the formulas below:

X=intersect(Open_body.1\Line.1, 'yz plane').coord(1)
Y=intersect(Open_body.1\Line.1, 'yz plane').coord(2)
Z=intersect(Open_body.1\Line.1, 'yz plane').coord(3)

You get the intersect function from the Wireframe constructors and the point.coord

method from the Measures item of the dictionary.

8. Check the value displayed in the specification tree as well as in the Formulas dialog box.

The KwoGettingStarted.CATPart document used as a sample for the Product Engineering

Optimizer User's Guide illustrates this scenario.

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugparameters0000.htm

Applying Ranges to Parameters by Using a Rule

This task explains how to apply ranges to parameters by using a rule.

1. Open the KwrRangesParameters.CATPart.

2. Click the icon and select Real in the scrolling list to create two parameters of Real type: Real.1 and

Real.2.

3. Select Real.1 and right-click the field next to the Edit name or value of the current parameter box.

4. Select Add Range … The Range of Real.1 dialog box opens.

5. Specify the Minimum and the Maximum bounds (-5 and 5 for example), and click OK twice.

6. Access the Knowledge Advisor workbench and click the Rule icon (). The Rule editor opens.

7. Enter the following rule: Real.2 =Real.1

.InferiorRange and click OK: Real.2 value changes

to -5.

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrRangesParameters.CATPart

8. Double-click the rule under the Relations node and

replace the existing script with Real.2 =Real.1

.SuperiorRange and click OK: Real.2 value changes

to 5.

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugparameters0000.htm

Activating and Deactivating a Component

This task explains how to activate and deactivate a component.

In the scenario described below, the CATProduct file contains two CATPart files that you will activate and deactivate
alternatively after creating user parameters and a rule based on these parameters.

Parameters driven by rules are designed to enable the user to control components activities at assembly level.

1. Open the KwrSyringe.CATProduct file and save the following files in the same directory

(SyringePiston.CATPart, HollowSyringePiston.CATPart, and SyringeContainer.CATPart): This file contains a

syringe made up of three different parts: A barrel, and two different plungers.

2. Create a multiple value parameters of string type. To do so, proceed as follows:

● Click the icon. The Formulas Editor opens.

● Select String in the scrolling list with Multiple Values. Click the New Parameter of type button. The Value
List dialog box opens.

● Enter two different values, Hollow and Full, and click OK.

● Edit the name of the new parameter (SyringeType in this scenario) in the Edit Name or value of the current
parameter and click OK. The new parameter is displayed under the Parameters node of the Specification
tree.

3. Access the Knowledge Advisor workbench and click the Rule icon to create a rule. The script of this rule will

allow you to enable or disable one of the plungers.

4. Enter the code below in the Rule Editor, and click OK.

if (SyringeType == "Hollow")
{
S3\Component_Activation_State = false
S2\Component_Activation_State = true
}
else
{
S2\Component_Activation_State = false
S3\Component_Activation_State = true
}

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrSyringe.CATProduct
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/SyringePiston.CATPart
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/HollowSyringePiston.CATPart
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/SyringeContainer.CATPart

6. Double-click the SyringeType parameter under the

Parameters node and select Hollow in the Edit Parameter

window. The SyringeBarrel CATPart and the

HollowSyringePlunger CATPart are displayed.

7. Double-click the SyringeType parameter and select "Full" in

the Edit Parameter window. The SyringeBarrel CATPart and

the SyringePlunger CATPart are displayed.

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugparameters0000.htm

Creating an Associative Link between Measures and
Parameters

This scenario explains how to create a persistent and associative link between a measure created using
the ‘Measure Item' or ‘Measure Between' command and a parameter.

● Measure Item allows you to get the length of a curve (edge, line, curve), radius or angle depending
on the parameter magnitude.

● Measure Between allows you to get the minimal distance or angle between two elements,
depending on the parameter magnitude.

This link can be created only if the ‘Keep measure' option is checked in the Measure Item and
Measure Between dialog boxes (if not the result is copied as a simple value.)

● No formula is created when using the Measure Item or the Measure Between commands.

● The icon located on the right of the editor
field is a measure between or item icon.
Note that you will be able to edit the
measure.

● The parameters located below the Parameters node are directly linked to the measures.

● You can invert the sign of the
parameter using the Invert value
command in the Measure Item or
Measure Between panel. The sign
concerns only the valuated parameters
and not the parameter of the measure.

● To have an associative link, you must make an associative measure. If you select the Picking point
mode and the Measure between function, the measure will not be associative. As a result, there will
be no associative geometry.

● When a measure is not associative, the value displays in the value field.

● Even in the case of an associative measure, if you only want to get the result of the measure,
uncheck the Keep measure check box.

● To create a "smart" customization, click the Customize... button in the Measure Item dialog box to
see the properties the system can detect for the various types of item you can select.

1. Open the KwrPlaneWing.CATPart file. The following image displays.

Using the Measure Item... command

2. Add a parameter of Length type. To do so, proceed as follows:

❍

Click the Formula icon (). The Formulas dialog box displays.

❍
In the New parameter of type scrolling list, select Length and click the New

parameter of type button. Length.1 displays in the Edit name or value of the

current parameter field.

❍
Right-click the value field of Length.1 and

select the Measure Item... command. The

Measure Item dialog box displays.

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrPlaneWing.CATPart

❍
Make sure the Keep measure option is checked in the Measure Item dialog box.

❍
In the specification tree, expand the Sketch.1 node, and select Spline.2. The

selected item is highlighted in the geometry and its measure is displayed in green.

❍
Click OK in the Measure Item dialog box and OK in the Formulas dialog box. A new

parameter is added below the Parameters node and below the Measure node. The

Length.1 parameter is now linked to the result of the measure.

Using the Measure Between... command

1. Add a parameter of Angle type. To do so, proceed as follows:

❍

Click the Formula icon (). The Formulas dialog box displays.

❍
In the New parameter of type scrolling list, select Angle and click the New

parameter of type button. Angle.1 displays in the Edit name or value of the

current parameter field.

❍
Right-click the value field of

Angle.1 and select the Measure

Between... command. The

Measure Between dialog box

displays.

❍
In the Selection 2 mode scrolling list, select the Edge only option.

❍
In the specification tree, select Plane xy then select the geometry as shown below.

The selected items are highlighted in the geometry and the measure is displayed

in green.

❍
Click OK in the Measure Between dialog box and OK in the Formulas dialog box.

An angle parameter is added below the Parameters node and the measure

displays below the Measure node.

❍
Click here to display the result sample.

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrPlaneWingresult.CATPart

Note that:

● if several characteristics of the measure are computed and have the same magnitude,

the system will choose the most convenient according to predefined rules.

● To remove the link to the measure, right-click the measure item in the
specification tree and select the measure object->Remove the link with
measure command.

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugparameters0000.htm

Using Relations based on Publications at the Product
Level

This scenario explains how to use relations based on publications at the product level. The scenario
described below is divided into the following steps:

● Add a parameter to the KwrScrew.CATPart called Screw_Volume, add a formula to calculate the
volume of the screw and publish the Screw_Volume parameter.

● Add a parameter to the KwrScrew1.CATPart called Screw_Volume, add a formula to calculate the
volume of the screw and publish the Screw_Volume parameter.

● Create a CATProduct file called Bolt and import the KwrScrew.CATPart

● Import KwrNut.CATPart.

● In the context of the Bolt product, create a formula calculating the bolt volume based on the screw
and the nut publications.

● In the context of the bolt, replace KwrScrew.CATPart by KwrScrew1.CATPart. The volume is
recomputed.

Before you start, make sure that the Keep link with selected object check box is checked (Tools-
>Options->Part Design->General).

Note that this function can be used with:
● Design Tables

● Formulas

● Rules and Checks

● Set of Equations

● The optimization

1. Open the KwrNewScrew.CATPart document. The following image displays.

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrNewScrew.CATPart

2. Add a Volume parameter to the part. To do so, proceed as follows:

❍ Click the icon. The Formula Editor opens. In the New parameter of type scrolling

list, select Real and click the New parameter of type button.

❍ In the Edit name or value of the current parameter field, enter the name of the

parameter: Screw_Volume. Click Apply and click the Add Formula button. The Formula

Editor opens.

❍ Enter the following formula by using the Dictionary:

Screw_Volume=smartVolume(PartBody\Pad.1)+smartVolume(PartBody\Pad.2)

. Click OK, Yes and OK twice.

3. Publish the Screw_Volume parameter.

To do so, select

the Tools-

>Publication

command and

click the

Screw_Volume

parameter

under the

Parameters

node in the

specification

tree. Click OK.

The published

parameter

appears in the

specifications

tree below the

Publication

node. Save your

file and close it.

4. Open the KwrNewScrew1.CATPart and repeat the steps listed above (steps 1 to 3 included). The

part should be identical to the one below. Save your file and close it.

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrNewScrew1.CATPart

5. Create a CATProduct file named KwrBolt.CATProduct.

6. Click the Root product and select the Insert->Existing Component... command. The File

selection box displays. Select the KwrNewScrew.CATPart file and click Open. The screw is

imported.

7. Select the Insert->Existing Component... command, select the KwrNewnut.CATPart file and

click Open. The nut part is inserted.

8. Add a Bolt_Volume parameter to the product to compute the volume of the bolt. To do so,

proceed as follows:

❍ Click the Root product and click the icon. The Formula Editor opens. In the New

parameter of type scrolling list, select Real and click the New parameter of type

button.

❍ In the Edit name or value of the current parameter field, enter the name of the

parameter: Bolt_Volume. Click Apply and click the Add Formula button. The Formula

Editor opens.

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrNewNut.CATPart

❍ Enter the following formula by using the Dictionary and by clicking the published parameters

in the specification tree: Bolt_Volume=`..!screw.2!Screw_Volume`

+`..!Nut!Nut_Volume`. Click OK, and OK. The Bolt volume displays

9. Replace the screw to compute a new volume: Double-click, then right-click the Screw.2

component in the specification tree and select the Components->Replace Component...

command. The File Selection window opens. Select the KwrNewScrew1.CATPart file and click

Open.

10. Click Yes and OK in the Impacts on Replace window. The new screw is inserted and the bolt

volume is updated.

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugparameters0000.htm

Publishing Parameters

This scenario explains how to publish parameters. The scenario described below is divided into the following steps:
● Add parameters to the Screw.2 document and publish its Diameter, Depth, and Volume parameters. Repeat the

same operations with the second CATPart file.

● Create a CATProduct file and import Screw.2.

● In the context of the Bolt product, insert the Nut part that imports the Depth and the Diameter parameters by
selecting the publication MyDepth and MyDiameter of Screw.2.

● In the context of the bolt, replace Screw.2 (KwrScrew.CATPart) by Screw.2 (KwrScrew2.CATPart) that doesn't have
the same structure as the first one but owns the same publications. Both the parameters and the check are
recomputed.

A publication has a name and references a geometry or parameters inside the product (or one of its sub-products).

The publication of parameters should be used when:

● Defining an import of parameters between two parts (similar to the import of geometry).

● Defining relations at the assembly level between parameters (similar to constraints).

Before you start, make sure that the Keep link with selected object check box is checked (Tools->Options->Part
Design->General).

1. Open the KwrScrew.CATPart document. The following image displays.

2. Add parameters to the part. To do so, proceed as follows:

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrScrew.CATPart

❍ Click the icon. The Formula Editor opens. In the New parameter of type scrolling list,

select Volume and click the New parameter of type button.

❍ In the Edit name or value of the current parameter field, enter the name of the parameter:

MyVolume. Click Apply and click the Add Formula button. The Formula Editor opens.

❍ Enter the following formula by using the Dictionary: smartVolume(PartBody\Pad.1) +

smartVolume(PartBody\Pad.2) . Click OK, and Yes.

❍ In the New parameter of type scrolling list, select Length and click the New parameter of

type button.

❍ In the Edit name or value of the current parameter field, enter the name of the parameter:

MyDepth. Click Apply and click the Add Formula button.

❍ Enter the following formula: MyDepth=PartBody\Pad.2\FirstLimit\Length and click OK.

❍ In the New parameter of type scrolling list, select Length and click the New parameter of

type button.

❍ In the Edit name or value of the current parameter field, enter the name of the parameter:

MyDiameter. Click Apply and click the Add Formula button.

❍ Enter the following formula: MyDiameter=PartBody\Sketch.2\Radius.2\Radius * 2. Click

OK twice.

3. Publish the MyVolume, MyDepth, and MyDiameter parameters.

To do so, select the Tools-

>Publication command and select

the MyVolume, MyDepth, and

MyDiameter parameters in the

specifications tree. Click OK. The

published parameters appear in the

specifications tree below the

Publication node. Close the file.

4. Open the KwrScrew2.CATPart and repeat the steps listed above (steps 1 to 3 included). The part should be

identical to the one below. Close the file.

5. Create a CATProduct file. Select the Insert->Existing Component... command and click the root of the

specifications tree. The File selection box displays. Select the KwrScrew.CATPart file and click Open. The

screw is imported.

6. Select the Insert->Existing Component... command, select the Kwrnut.CATPart file and click Open. The nut

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrScrew2.CATPart
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrNut.CATPart

part is inserted.

7. Double-click the inner circle of the nut, the Hole Definition window displays.

❍ Right-click the Diameter field and select the Edit formula... command. The Formula Editor opens.

❍ Select MyDiameter in the screw publications. The formula should be as follows:

PartBody\Hole.1\Diameter=`External Parameters\MyDiameter`. Click OK.

❍ Right-click the Depth field and select the Edit formula... command. The Formula Editor opens.

❍ Select MyDepth in the screw publications. The formula should be as follows:

PartBody\Hole.1\HoleLimit.1\Depth=`External Parameters\MyDepth`. Click OK twice.

8. Double-click, then right-click the Screw.2 component in the specifications tree and select the Components-

>Replace Component... command. The File Selection window opens. Select the KwrScrew2.CATPart file and

click Open.

9. Click Yes when asked if you want to replace all instances with the same reference as the selected product.

Update the nut part: the parameters are recomputed.

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugparameters0000.htm
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugparameters0013.htm

Getting Familiar with the Parameters Explorer
Contrary to the parameters created using the Formulas editor, the parameters created using the
Parameters Explorer display below the feature selected in the specification tree.

The Parameters Explorer dialog box is displayed when you click the icon in the standard tool bar. This
dialog box allows you to add parameters to features. It is made up of the following fields:

● Feature

● Parameters

● Parameter

● Properties

● Ranges

Feature

This field indicates the item selected in the
specification tree to which the parameter will
be added.

Parameters

This field enables the user to create the
parameters that will be added to the feature
that he selected in the specification tree. To
know more about this field, see Getting
Familiar With the f(x) Dialog Box.

Parameter

The Value field enables the user to assign a
value to the created parameter.

Properties

The Local Name field enables the user to
modify the name of the parameter that he

Ranges

The Inf. Range check box, if checked, enables the user to add an
inferior range to the parameter.

The Sup. Range check box, if checked, enables the user to add
an inferior range to the parameter.

created.

The Name field indicates the way the
parameter will display in the editors.

The Comment field enables the user to add
comments to the parameter.

The Constant check box, if checked, enables
the user to lock the parameter. In this case,
the parameter cannot be modified.

The Hidden check box, if checked, enables
the user to decide if the wants the parameter
to display or not.

[

 Adding a Parameter to a Feature

This task explains how to add two parameters to a circular pattern feature. One parameter is a
multiple value string, the other is a mass with upper and lower bounds.

1. Open the KwrBallBearing1.CATPart document.

2. In the specification tree, select the root feature, then select the

Start->Knowledgeware->Knowledge Advisor command to access the Knowledge

Advisor workbench.

3. In the specification tree, select the CircPattern.1 feature.

4. Click the Parameters Explorer icon, the dialog box below is displayed:

file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrBallBearing1.CATPart

5. In the New Parameter of Type list, select the String type, then in the opposite field

('With'), select the Multiple Values item. Click New Parameter of Type.

6. In the <Value list dialog box:

 a) enter the Type1 string, then press Enter

 b) enter the Type2 string, then press Enter

 c) click OK to go back to the Parameter Explorer dialog box.

7. If need be, rename the created parameter in the Local Name field and add a comment.

8. In the New Parameter of Type list, select the Mass type, then in the opposite field

('With'), select the Single Value item. Click New Parameter of Type. The MASS.1

name is displayed by default in the Properties and a default value of 0kg is assigned to

the created parameter.

9. Modify these values as indicated on the figure below:

10. Click OK. Both parameters are displayed in the specification tree right below the

CircPatter.1 feature.

Parameters added by using the Parameters Explorer are displayed right

below the feature they are assigned.

[

Adding a Parameter to an Edge

This task explains how to add parameters to an edge by using the Parameters Explorer.

Note that this new function is designed to work on edges, faces and vertex.

1. Open the KwrSupport.CATPart file. The following image displays.

2. From the Start->Knowledgeware menu, access the Knowledge Advisor workbench.

3. Click the Add Parameters on Geometry icon () and select the upper edge of

Pad.2.

file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrSupport.CATPart

The Parameter Explorer dialog box opens.

4. In the New Parameter of type scrolling list, select the Length parameter type, and

click the New parameter of type button.

5. In the Local Name field, enter the name of the parameter. For the purpose of this

scenario, enter Extract_Length, and click OK to validate.

A new Extract feature is created and the parameter you just created is added to this

feature.

Parameters added by using the Parameters Explorer are displayed right below the feature they
are assigned.

Creating Sets of Parameters

This task explains how to create sets of parameters.
You can create sets of parameters below the Parameters node of the specification tree. Using
this capability enables you to regroup parameters by categories.

1. Check at least the Parameters and Relations options of the Display tab in the Tools-

>Options...->Infrastructure->Part Infrastructure settings.

2. Open any document containing at least one parameter or create a document and add a

parameter to it (otherwise, you won't have the Parameters node displayed in the

specification tree).

3. Click the icon, then select the Parameters node in the specification tree. The

Parameters.1 (or Parameters.n) parameter set is added to the specification tree right

below the Parameters node.

4. Click the icon to add a new parameter in the created parameter set. The

Parameter Explorer dialog box is displayed. In the specification tree, select the

Parameter Set you want to add a parameter to. The name of the parameter set is

displayed in the Feature field of the Parameter Explorer dialog box.

5. Fill in the other fields of the Parameter Explorer dialog box. If need be, see Adding a

Parameter to a Feature.

6. After you have finished specifying the new parameter, click OK in the Parameter

Explorer dialog box. In the specification tree, you can expand the feature which

represents the parameter set. A new parameter has been added below the parameter

set.

Parameters belonging to a parameter set can be reordered by using the Reorder... command
from the contextual menu.

Parameters: Useful Tips

Parameters and National Support Languages

CATIA users working with non-latin characters should check the Tools->Options>Knowledge->Parameter
Names->Surrounded by'option. Otherwise, parameter names should have to be renamed in latin characters
when used in formulas.

Parameters added by using the Parameters Explorer are displayed right below the feature they are assigned.

Parameters belonging to a parameter set can be reordered by using the Reorder... command from the
contextual menu.

[

Working with Formulas
Introducing Formulas

Getting Familiar With the f(x) Dialog Box
Using the Dictionary
Creating a Formula

Specifying a Measure in a Formula
Referring to External Parameters in a Formula

Using the Equivalent Dimensions Feature
Formulas: Useful Tips

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugat1013.htm

Introducing Formulas
Formulas are features used to define or constrain a parameter. A formula is a relation: the left part of the
relation is the parameter to be constrained, the right part is a statement. Once it has been created, a formula
can be manipulated like any other feature from its contextual menu. The formula language uses operators and
functions of all types whereby you can carry out operations on parameters.

Displaying Formulas in the Specification Tree

Formulas are relations and as such they can be displayed below the Relations node provided you check the
'Relations' box below the 'Specification tree' settings in the Tools->Options->Infrastructure-> Part
Infrastructure->Display dialog box.

In addition, formulas can also be displayed below the Parameters node provided you check:

● the 'Parameters' box below the 'Specification tree' settings in the Tools->Options->Infrastructure->
Part Infrastructure->Display dialog box

● as well as the 'With Formula' box below the Parameter Tree View settings in the Tools->Options-
>General->Parameters and Measure dialog box

The Activity Parameter

A formula is a feature which is assigned a parameter called the activity. The activity value is a boolean. If the
activity is set to true, the parameter value cannot be calculated from the formula. If a formula is created for a
parameter which is not already constrained by another formula, the activity of the new formula is set to true by
default.

A parameter can be constrained by several formulas, but only one formula can be active at a time. Before
activating a formula on a given parameter, you must deactivate the other formulas defined on the same

parameter.

Activity value false true

Relation icon in the specification
tree

Importing Formulas

Parameters as well as the associated formulas can be imported from an external file. Refer to Introducing
Parameters and Importing Parameters for more information on how to import formulas.

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugat3003.htm
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugat3003.htm
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugat3114.htm
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugat3200.htm

Getting Familiar With the f(x) Dialog Box

The f(x) dialog box is displayed when you click the icon in the standard tool bar. This dialog box allows you
to:

● Display the list of parameters

● Create parameters and formulas

● Import external files.

The parameter list

Basically, the parameter list displays the parameters related to the feature selected either in the specification
tree or in the geometry area. If no feature has been selected, all the document parameters are displayed. The
dialog box being open, you can select a given feature either in the tree or in the geometry area and display its
related parameters.

You can restrict the list of displayed parameters by using the Filter Name and Filter Type capabilities as well as
the Incremental check box.

The Filter Name filter

This filter allows you to narrow the list of displayed parameters by specifying a substring. If you specify *Limit*
as filter, only the parameter with Limit as sub-string will be displayed, for example:

PartBody\Pad.1\FirstLimit\Length
PartBody\Pad.1\SecondLimit\Length
PartBody\Hole.1\HoleLimit.1\Depth
PartBody\Hole.1\HoleLimit.1\Angle

The Filter Type filter

This filter allows you to restrict the list of parameters by specifying a type. Selecting User parameters will
display only the parameters created by the New Parameter of type button. Selecting Hidden parameters will
display only the list of parameters which have been declared as hidden by using the Hide command from the
value field contextual menu.

The Hide command is only available for user parameters.

The Incremental check box

Selecting a feature in the specification tree or in the geometry area displays in the editor only the first level of
features right below the selected feature. The parameter list on figure above displays all the parameters related
to the Pad.1 and Hole.1 features. Selecting Pad.1 in the tree (Incremental unchecked) will display the
parameters below:

PartBody\Pad.1\FirstLimit\Length
PartBody\Pad.1\SecondLimit\Length
PartBody\Sketch.1\Radius.3\Radius

Checking Incremental restricts the list of parameters to the one below:

PartBody\Pad.1\FirstLimit\Length
PartBody\Pad.1\SecondLimit\Length

The 'Edit name of value of the current parameter' field

This field displays the parameter which has been selected in the parameter list. The value field on the right-
hand side is grayed out when the parameter is constrained by a formula, a design table or any type of relations.
Right-clicking this value field provides you with a number of commands whereby you can refine the parameter
definition.

The New Parameter of type button

This button allows you to create a user parameter. This user parameter can be assigned a single value or
multiple values (akin to the enum idea).

The Delete button

This capability operates only for user parameters.

The Add Formula button

When you create a formula, you specify that a parameter, whatever its type, is to be constrained by a relation.
Clicking the Add Formula button displays the Formula editor. The formula which is created is displayed in the
parameters list as well as its activity.

To know more about the Dictionary available in the Formula editor, see Using the Dictionary.

The Delete Formula button

When a parameter which is constrained by a formula is selected in the parameter list, clicking Delete Formula
removes the formula.

The Import button

This capability allows you to import parameters and parameter values from a text file or from an Excel file
(Windows).

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugat1013.htm
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugat3200.htm
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugat1013.htm

Using the Dictionary

The Dictionary allows you to access the functions, operators and feature
attributes that can be used in relations.
It can be accessed both from the Formula Editor, the Rule Editor as well as
from the Check Editor.

Packages displayed in the left part of the browser are those you selected from the Tools->Options -
>General->Parameters and Measure->Language tab.

Design tables Operators Point Constructors

Law Line Constructors Circle Constructors

String Direction Constructors List

Measures Surface Constructors Wireframe Constructors

Part Measures Plane Constructors Analysis Operators

Math

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyughlpString.htm
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyughlpDirConstructors.htm

Constants
The following constants are specified or recognized by CATIA when programming rules and checks. As a result,
they can be used anywhere in a relation in place of the actual values.

● false - one of the two values that a parameter of type Boolean can have

● true - one of the two values that a parameter of type Boolean can have

● PI - 3.14159265358979323846 - The ratio of the circumference of a circle to its diameter.

● E - The base of natural logarithm - The constant e is approximately 2.718282.

]

Design Table Methods

CloserSupConfig Method CloserInfConfig Function CloseValueSupInColumn Method

CloseValueInfInColumn Method MinInColumn Function MaxInColumn Method

LocateInColumn Method CellAsString Function CellAsBoolean Method

CellAsReal Method SetCell Method LocateInRow Method

CloserSupConfig Method

Applies to a design table sheet. Returns the configuration which contains the smallest values greater or equal to the values of the
given arguments. When several configurations meet this condition, the method sorts out the possible configurations with respect to
the column order as it is specified in the argument list.

Syntax

sheet.CloserSupConfig(columnName: String, minValue: Literal, ...): Integer

The CloserSupConfig function takes the following arguments:

Arguments Description
columnName Should be put in quotes. At least, one couple of arguments columnNamei/minValuei is required
minValue Required. You should specify the units.

Example

Given the design table below:

 SketchRadius(mm) PadLim1(mm) PadLim2(mm)
1 120 60 10
2 130 50 30
3 120 60 25
4 140 50 40

The expression below:

Relations\DesignTable1\sheet_name.CloserSupConfig("PadLim1", 60mm, "SketchRadius", 120mm, "PadLim2", 20mm)

returns 3

CloserInfConfig Method

Applies to a design table sheet. Returns the configuration which contains the largest values less or equal to the values of the given
arguments. When several configurations meet this condition, the method sorts out the possible configurations with respect to the
column order as it is specified in the argument list.

Syntax

sheet.CloserInfConfig(columnName: String, maxValue: Literal, ...):Integer

The CloserInfConfig method takes the following arguments:

Arguments Description

columnName Should be put in quotes. At least, one couple columnName/maxValue is required

maxValue Required. You should specify the units.

Example

Given the design table below:

 SketchRadius(mm) PadLim1(mm) PadLim2(mm)
1 120 60 10
2 130 50 30
3 120 60 20
4 140 50 40

The statement below
Relations\DesignTable1\sheet_name.CloserInfConfig("PadLim1", 60mm, "SketchRadius", 130mm, "PadLim2", 40mm)
returns 3.

Explanations

The values of lines 1 , 2 and 3 are all less or equal to the values specified in the method arguments.

● As the first parameter specified in the argument list is "PadLim1", the method scans the lines 1, 2 and 3 and searches for the
largest "PadLim1" value which is less or equal to 60 mm. Two configurations meet the condition: configuration 1 and
configuration 3.

● As the second parameter specified is "SketchRadius", the method scans the configurations 1 and 3 and searches for the largest
"SketchRadius" value less or equal to 130 mm. Again, the function finds two configurations meeting the criteria.

● Then it rescans lines 1 and 3 and searches for the largest "PadLim2" value less or equal to 40mm. The result is line 3.

CloserValueSupInColumn Method

Applies to a design table sheet. Scans the values of a column and returns the greatest cell value which is the nearest to a specified
one. Returns 0 if no value is found or if the method arguments are not properly specified.

Syntax

sheet.CloserValueSupInColumn(columnIndex: Integer, Value: Real)

The CloserValueSupInColumn method takes two arguments:

Arguments Description

columnIndex Required. Index of the table column. Integer from 1 to n.

Value Required. Value searched for. Should be a real.

Example
ValueSup=Relations\DesignTable1\sheet_name.CloserValueSupInColumn(1, 80mm)
Message("Closest sup value is # (0.08 is expected)", ValueSup)

Sample

KwrProgramDT.CATPart

CloserValueInfInColumn Method

Applies to a design table sheet. Scans the values of a column and returns the smallest cell value which is the nearest to a specified
one. Returns 0 if no value is found or if the method arguments are not properly specified.

Syntax

sheet.CloserValueInfInColumn(columnIndex: Integer, value: Real): Real

The CloserValueInfInColumn function has two arguments:

Arguments Description
columnIndex Required. Number or index of the table column. Integer from 1 to n.
value Required. Value searched for. Should be a real.

Example

Message("Closest inf value is # ", Relations\DesignTable1\sheet_name.CloserValueInfInColumn(2,41mm))

Sample

KwrProgramDT.CATPart

MinInColumn Method

Applies to a design table sheet. Returns the smallest of a column values. Returns 0 if the column specified is out of range.

Syntax

sheet.MinInColumn(columnIndex : Index): Real

where columnIndex is the column number.

Example
MinimumValue=MinInColumn(3)
Message("Minimum value is # (0 is expected)", MinimumValue)
/* you can use also */
Message("Minimum value is # (0 is expected)", MinInColumn(3))

Sample

KwrProgramDT.CATPart

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrProgramDT.CATPart
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrProgramDT.CATPart
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrProgramDT.CATPart

MaxInColumn Method

Applies to a design table sheet. Returns the greatest of a column values. Returns 0 if the column does not contain numerical values
or if the method arguments are not properly specified.

Syntax

sheet.MaxInColumn(columnIndex: Integer): Real

Example

MaximumValue=Relations\DesignTable1\sheet_name.MaxInColumn(1)
Message("Maximum value is # (0.150 is expected)", MaximumValue)

Sample

KwrProgramDT.CATPart

LocateInColumn Method

Applies to a design table sheet. Returns the index of the first row which contains a specified value. Returns zero if the value is not
found or if the method arguments are not properly specified.

Syntax

sheet.LocateInColumn(columnIndex: Integer, value: Literal) : Integer

The LocateInColumn method has two arguments:

Arguments Description

ColumnNumber Required. Number or index of the table column. Integer from 1 to n.

Value Required. Value searched for. Can be a string or a boolean

Example
Line=Relations\DesignTable1\sheet_name.LocateInColumn(4,11mm)
if (Line == 0)
{
Message("No value found !!!")
}

Sample

KwrProgramDT.CATPart

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrProgramDT.CATPart
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrProgramDT.CATPart

CellAsString Method

Applies to a design table sheet. Returns the contents of a cell located in a column. Returns an empty string if the cell is empty or if
the method arguments are not properly specified.

Syntax

sheet.CellAsString(rowIndex: Integer, columnIndex: Integer): String

where rowIndex is the configuration number and columnIndex the column number.

Example
CString=Relations\DesignTable1\sheet_name.CellAsString(1,5)
if (CString == "")
 {
 Message("No value read !!!")
 }

Sample

KwrProgramDT.CATPart

CellAsBoolean Method

Applies to a design table sheet. Returns the contents of a cell located in a column intended for boolean values. Returns false if the
cell does not contain a boolean or if the method arguments are not properly specified.

Syntax

sheet.CellAsBoolean(rowIndex: Integer, columnIndex: Integer): Boolean

The CellAsBoolean method has two arguments:

Arguments Description

rowIndex Required. Configuration number. Integer from 1 to n.

columnIndex Required. Index of the table column. Integer from 1 to n.

Example
Boolean2=Relations\DesignTable1\sheet_name.CellAsBoolean(1,5)
if (Boolean2 <> true)
{
 Message("Error !!!")
}

Sample

KwrProgramDT.CATPart

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrProgramDT.CATPart
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrProgramDT.CATPart

CellAsReal Method

Applies to a design table sheet. Returns the contents of a cell located in a column intended for real values. Returns zero if the cell
does not contain a real or if the method arguments are not properly specified.

Syntax

sheet.CellAsReal(rowIndex: Integer, columnIndex: Integer): Real

where rowIndex is the configuration number (integer from 1 to n) and columnIndex the column number.

Example
Boolean2=Relations\DesignTable1\sheet_name.CellAsBoolean(1,5)
if (Boolean2 <> true)
 {
 Message("Error !!!")
 }

Sample

KwrProgramDT.CATPart

SetCell Method

Enables the user to add a cell at a given position in an Excel file or a tab file.

Note: the index should start at 1 for the (1,1) cell to be located at the left top corner.

Syntax

sheet.SetCell(IndexRow:Integer, IndexColumn:Integer, CellValue:Literal): Void

LocateInRow

Applies to a design table sheet. Returns the index of the first row which contains a specified value. Returns zero if the value is not
found or if the method arguments are not properly specified.

Syntax

sheet.LocateInRow(rowIndex: Integer, value: Literal) : Integer

The LocateInRow method has two arguments:

Arguments Description

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrProgramDT.CATPart

RowNumber Required. Number or index of the table row. Integer from 1 to n.

Value Required. Value searched for. Can be a string or a boolean

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugat1013.htm

Operators

Arithmetic operators

+ Addition operator (also concatenates strings)

- Subtraction operator

* Multiplication operator

/ Division operator

 () Parentheses (used to group operands in expressions)

= Assignment operator

** Exponentiation operator

Logical Operators

and Logical conjunction on two expressions

or Logical disjunction on two expressions

Comparison Operators

<> Not equal to

== Equal to

>= Greater or equal to

<= Less than or equal to

< Less than

> Greater than

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugat1013.htm

Point Constructors
Sample: KwrPointConstructors

● point (x: Length, y: Length, z: Length): Point
Creates a point from its three coordinates. Values or parameter names can be used to pass the arguments.

Examples:
Specifying values:
Open_body.1\Point.1 =
point(10mm,10mm,10mm)
Specifying parameter names:
Open_body.1\Point.4 =
point(0mm,L3,L1)

● pointbetween(pt1: Point, pt2: Point, ratio: Real, orientation: Boolean) : Point
Creates a point between another two points. If true is specified in the fourth argument, the third parameter
is the ratio of the distance pt1-new point to the pt1-pt2 distance. If false is specified in the fourth
argument, the ratio expresses the distance pt2-new point to the pt1-pt2 distance (to create a point at the
middle between pt1 and pt2, specify a ratio of 0.5).

Example:
Open_body.1\Point.5 =
pointbetween(Open_body.1\Point.1, Open_body.1\Point.2, 0.6, true)

● pointoncurve(crv:Curve, pt:Point, distance:Length, orientation: Boolean) : Point
Creates a point on a curve. The point is to be created at a given curvilign distance from a reference point
specified in the second argument. The boolean specified in the fourth argument allows you to reverse the
direction in which the point is to be created. If the point specified in the second argument is not on the
curve, the projection of this point onto the curve becomes the actual reference point.

Example:
Open_body.1\Point.6 =
pointoncurve(Open_body.1\Spline.1, Open_body.1\Point.5, 5mm, true)

● pointoncurveRatio(crv:Curve, pt:Point, ratio:Real, orientation: Boolean) : Point
Creates a point on a curve. The location of the point to be created is determined by the real which is
specified in the third argument. This real is the ratio of the distance [point to be created->reference point]
to the distance [point to be created->curve extremity]. The boolean specified in the fourth argument allows
you to reverse the direction in which the point is to be created. If the point specified in the second
argument is not on the curve, the projection of this point onto the curve becomes the actual reference
point.

Example:
Open_body.1\Point.7 =
pointoncurveRatio(Open_body.1\Spline.1,Open_body.1\Point.3, 0.4,true)

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrPointContructors.CATPart

● pointonplane(pln:Plane, pt:Point, dx:Length, dy:Length): Point
Creates a point on plane. The location of the point to be created on the plane is determined by the
coordinates (H,V system) passed in the third and fourth arguments. These values are specified with respect
to the reference point passed in the second argument.

Example:
Open_body.1\Point.8 =
pointonplane(Open_body.1\Plane.1,Open_body.1\Point.1, 10mm,10mm)

● pointonsurface(sur:Surface, Pt:Point, Dir:Direction, dist:Length): Point
Creates a point on surface. The location of the point to be created on the surface is determined by its
distance (fourth argument) to a reference point (second argument) along a direction (third argument).

Example:
Open_body.1\Point.9 =
pointonsurface(Open_body.1\Extrude.1,Open_body.1\Point.3,
direction(Open_body.1\Line.1),10mm)

● center(circle): Point
Creates a point from a circle. The circle can be of any type (sketch or GSM circle). The point which is
created is the circle center.

Example:
Open_body.1\Point.10 =
circle(Open_body.1\Circle.1)

● pointtangent(curve,direction): Point
Creates the tangency point between a curve and a direction.

Example:
Open_body.1\Point.11 =
pointtangent(Open_body.1\Spline.1, direction(`yz plane`))

● centerofgravity(Body): Point
Constructs the center of gravity of a solid (i.e. a PartBody type feature).

Example:
Open_body.1\Point.12 =
centerofgravity(PartBody)

● curvaturecenter(crv: Curve, pt: Point): Point
Constructs the curvature center of a curve for a given point.

Example:
Open_body.1\Point.13 =
curvaturecenter(Open_body.1\Circle.1, Open_body.1\Point.6)

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugat1013.htm

Evaluate Method

Allows you to compute a law whether a KnowledgeAdvisor or a Generative Shape Design Law and use the
resulting data within another law.

Syntax

law.Evaluate(Real): Real

where the argument is the parameter to which the law is applied.

Example

1. Create a Generative Shape Design line.

2. Create a first law by clicking the icon in the standard tool bar.
3. In the law editor, create two real formal parameters.
4. Enter the law (Law.1) below into the editor:

FormalReal.1 = 5*sin(5*PI*1rad*FormalReal.2)+ 10
5. Click OK to add the law to the document.
6. Repeat the same operation and enter the law (Law.2) below:

FormalReal.1 = 3* FormalReal.2*Relations\Law.1.Evaluate(FormalReal.2)
7. In the Generative Shape Design workbench, create a line parallel to the line created in step 1. Specify

the law which is defined just above in the Offset field.

Sample

KwrObject.CATPart

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrObject.CATPart
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugat1013.htm
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyughlpString.htm

Line Constructors
Sample: KwrLineConstructors

● line(Point, Point): Line
Creates a line from two points.

Example:
Open_body.1\Line.1 =
line(Open_body.1\Point.1, Open_body.1\Point.2)

● line(pt: Point, dir: Direction, start: Length, end: Length, orientation: Boolean) : Line
Creates a line passing through a point and parallel to a direction.
The third and fourth arguments are used to specify the start and end points.
The last argument allows you to reverse the line direction.

Example:
Open_body.1\Line.2 =
line(Open_body.1\Point.2, direction(`zx plane`), 0mm, 20mm, true)

● lineangle(crv: Curve, sur: Surface, pt: Point, geodesic: Boolean, start: Length, end: Length, angle: Angle,
orientation: Boolean) : Line
Creates a line passing through a point, tangent to a surface and making a given angle with a curve. When
the geodesic argument is set to true, a geodesic line is created(projected) onto the surface.

Example:
Open_body.1\Line.3 =
lineangle(Open_body.1\Spline.1 , Open_body.1\Extrude.1 , Open_body.1\Point.4 , false, 0mm ,
50mm , 80deg , false)

● linetangent(crv: Curve, pt:Point, start:Length, end:Length, orientation:Boolean) : Line
Creates a line tangent to curve at a given point.

Example:
Open_body.1\Line.5 =
linetangent(Open_body.1\Spline.1, Open_body.1\Point.6 ,0mm, 30mm, true)

● linenormal(sur:Surface, pt:Point, start:Length, end:Length, orientation:Boolean) : Line
Creates a line normal to a surface at a given point.

● mainnormal(crv: Curve, pt: Point) : Line
Creates a line normal to a curve at a given point.
The line is created in the plane which contains the tangent vector.

● binormal(crv: Curve, pt: Point) : Line
Creates a line normal to a curve at a given point.
The line is created in plane which is orthogonal to the tangent vector.

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrLineConstructors.CATPart

Circle Constructors
Sample: KwrCircleConstructors.CATPart

circleCtrRadius (center: Point, support: Surface, radius: Length, limits: Integer,
start: Angle, end: Angle): Circle

Creates a circular arc from its center and radius. If the argument 4 is 0, the arguments 5
 and 6 are
taken into account.
Otherwise, a circle is created.
Example
 Open_body.1\Circle.1 =
 circleCtrRadius(Open_body.1\Point.1 , `zx plane` ,20mm,0,10deg,320deg)

● circleCtrPt(center: Point, point: Point, support: Surface, radius: Length, limits: Integer,
start: Angle, end: Angle): Circle

Creates a circular arc from its center and another point located on the circle. If the argument 4 is 0,
the arguments 5 and 6 are taken into account. Otherwise, a circle is created.
Example
Open_body.1\Circle.2 =
circleCtrPt(Open_body.1\Point.1 , Open_body.1\Point.2 , `xy plane` ,1,10deg, 370deg)

● circle2PtsRadius(point1: Point, point2: Point, support: Surface, radius: Length,
orientation: Boolean, limits: Integer): Circle

Creates a circular arc. The points specified in the arguments 1 and 2 are located on the arc to be
created and define the arc limits when the integer specified in the argument 6 is 0. When 0 is
specified in the argument 6, modifying the argument 5 boolean value allows you to display
the alternative arc.
Example
Open_body.1\Circle.3 =
circle2PtsRadius(Open_body.1\Point.1 ,Open_body.1\Point.2 ,`xy plane`,50mm, true, 0)

● Circle3Pts (pt1: Point, pt2: Point, pt3: Point, Limits: Integer) : Circle

Creates one or more circular arcs passing through three points. When 0 is specified in the argument 4,
the first and third points define the arc limits. When 1 is specified in the argument 4 the whole circle is
defined. When 2 is specifies in the argument 4 the direct circle is defined. When 3 is specified in the
argument 4, the complementary circle is defined.
Example
Open_body.1\Circle.2 =
circle3Pts(Open_body.1\Point.1, Open_body.1\Point.2, Open_body.1\Point.3, 0)

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrCircleConstructors.CATPart

● circleBitgtRadius(crv1:Curve, crv2:Curve, support: Surface, radius: Length, orientation1: Boolean, orientation2: Boolean,
Limits: Integer) : Circle

Creates one or more circular arcs tangent to two curves. When 0 is specified in the argument 7, the
tangency points define the arc limits. Modifying the orientation1 argument value allows you to reverse
the arc orientation with respect to the crv1 curve (there may be no solution). Modifying the orientation2
argument value allows you to reverse the arc orientation with respect to the crv2 curve.
Example
Open_body.1\Circle.4 =
circleBitgtRadius(Open_body.1\Circle.2 ,Open_body.1\Circle.5 ,`xy plane`, 30mm, false,
false, 0)

● circleBitgtPoint(crv1:Curve, crv2:Curve, pt:Point , support: Surface, orientation1: Boolean, orientation2: Boolean, Limits:
Integer) : Circle

Creates one or more circular arcs tangent to two curves and passing through a point on the second
curve. When 0 is specified in the argument 7, the tangency points define the arc limits. Modifying the
orientation1 argument value allows you to reverse the arc orientation with respect to the crv1 curve
(there may be no solution). Modifying the orientation2 argument value allows you to reverse the arc
orientation with respect to the crv2 curve.
Example
Open_body.1\Circle.4 =
circleBitgtPoint(Open_body.1\Circle.2 ,Open_body.1\Circle.5,Open_body.1\Point.1 ,`xy plane`, false, false, 0)

● circleTritgt(crv1:Curve, crv2:Curve, crv3:Curve, support: Surface, radius: Length,
orientation1: Boolean, orientation2: Boolean, orientation3: Boolean, Limits: Integer) : Circle

Creates one or more circular arcs tangent to three curves. When 0 is specified in the argument 9,
the tangency points define the arc limits. Modifying the value of an orientation argument allows you
to reverse the arc orientation with respect to the curve which has the same order in the argument
specification (orientation1 to be associated with crv1).
Example
Open_body.1\Circle.6 =
circleTritgt(Open_body.1\Circle.2 ,Open_body.1\Circle.7 ,Open_body.1\Circle.5 , `xy plane` ,false,false,false,1)

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugat1013.htm
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyughlpDirConstructors.htm

List
List methods are used to manage lists of parameters, pads ...: They enable the user to create lists, to add items
to the list, to remove items from the list, to retrieve values from the list, to move elements of the list to another
position, and to copy the content of a list into another one.

● List.Size () : Integer
Method used to return the number of items contained in the list.

● List.AddItem (Object: Objecttype, Index: Integer):VoidType
Method used to add an item to the list.

let list (List)
list.AddItem(PartBody\Hole.2 ,1)
list.AddItem(PartBody\Hole.3 ,2)
Message("#",list.Size())

● List.RemoveItem (Index: Integer) :VoidType
Method used to remove an item from the list.

● List.GetItem (Index: Integer) :ObjectType
Method used to retrieve a value/item from the list

● List.ReorderItem (Current: Integer, Target: Integer) :ObjectType
Method used to move an element of the list to a new position.

● Copy (List: List) : List
Method used to copy the content of a list and paste it in another list.

● List (Next: ObjectType, ...): List
Method used to create a list.

● List.Sum (): Real
Computes the sum of the items contained in the list..

● List.IndexOf (Element: ObjectType, StartIndex:Integer):Integer
Returns the index of a list item.

● Compute()
Function used to compute the result of an operation performed on the attributes supported by the
features contained in the list.
Example: List.1 .Compute("+","Hole","x.Diameter",Length.1)
Where:

● List.1 is the name of the list on which the calculation will be performed

● + is the operator used. (Supported operators are: -, min, and max.)

● Hole is the type of the list items used for the calculation (to calculate the diameter, the type to be
indicated is Hole, to calculate the volume, the type to be indicated is Solid)

● x stands for the list items. Note that the type of the items contained in the list should be identical.

● Length.1 is the output parameter.

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyughlpDirConstructors.htm
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugat1013.htm

Measures
Measures are functions that compute a result from data captured from the geometry area. Measures are
application-related objects and they won't be displayed in the dictionary if you don't have the right product
installed (Part Design or Generative Shape Design for example).

Sample: KwrMeasuresWiz.CATPart

● distance(Body1, Body2) : Length
Returns the distance between two bodies of a part.

Example:
Length.1 =
distance(Body.3 , Body.1)

● length(GSMCurve) :Length
Returns the total length of a curve.

● length(GSMCurve, Point1, Point2) : Length
Returns the length of a curve segment delimited by Point1 and Point2.

● length(GSMCurve,Point1,Boolean): Length
Returns the length of a curve segment located between Point1 and one of the curve ends.
Modifying the boolean value allows you to retrieve the length from the specified point to the other end.

● area(Surface): Area
Returns the area of a surface generated by the Generative Shape Design product (an extruded surface for
example).

● area(Curve) : Area
Returns the area delimited by a curve.

● point.coord(Integer): Length
Returns the coordinate of a point. Returns X if 1 is specified, Y if 2 is specified, Z if 3 is specified.

● point.coord(oX: Length, oY: Length, oZ: length): Void
Assigns the point coordinates to the length parameters specified in the arguments. This method can only
be used in Knowledge Advisor rules.

● Example:
if Open_body.1\Point.2.coord(1) > 0mm
Message("Point.2 abscissa is positive")
else
{
Open_body.1\Point.1.coord(Xout, Yout, Zout)
Message("Point.1 abscissa is: # ", Xout)
}

● volume(closedSurface) : Volume
Returns the volume of a closed surface.

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrMeasuresWiz.CATPart

● angle(C, Point1, Point2) : Angle
Returns the angle between the lines "C-Point1" and "C-Point2".

● angle(Line1, Line2) : Angle
Returns the angle between the Line1 and Line2 lines.

● angle(direction1,direction2) : Angle
Returns the angle between two directions.

● body.centerofgravity(oX: Length, oY: Length, oZ: length): Void
Assigns the values of the solid center of gravity coordinates to the parameters specified in the arguments.
Cannot be used in a formula.

Example:
if Xout==2mm
Body.3.centerofgravity(Xcog,Ycog,Zcog)

● curvature(crv: Curve, pt: Point): Real
Returns the curvature of a curve in a given point.

Example:
Real.1=
curvature(Open_body.1\Spline.1 ,Open_body.1\Point.2)

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugat1013.htm

Surface Constructors

offset(surface, length, boolean) : Surface
Creates an offset surface.Set orientation boolean to false to change the side of the created
 surface regarding the reference surface.

Example
Open_body.1\Surface.2=
offset(Open_body.1\Sweep.1, 10mm, false)

assemble(surface, ...) : Surface
Creates a join of several surfaces.

Example
Open_body.1\Surface.2=
assemble(Open_body.1\Sweep.1, Open_body.1\Sweep.2, Open_body.1\Offset.2)

split(surface, surface, boolean) : Surface
Creates a split of one surface by another. Use the third argument to choose the side to keep.

Example
Open_body.1\Surface.2=
split(Open_body.1\Sweep.1, Open_body.1\Sweep.2, true)

split(surface, curve, boolean) : Surface
Creates a split of one surface by a curve. Use the third argument to choose the side to keep.

Example
Open_body.1\Surface.2=
split(Open_body.1\Sweep.1, Open_body.1\Curve.2, true)

trim(surface, boolean, surface, boolean) : Surface
Creates a trim of one surface by another. Use the Booleans to choose the side to keep on each surface.

Example
Open_body.1\Surface.2=
trim(Open_body.1\Sweep.1, false, Open_body.1\Sweep.2, true)

near(surface, wireframe) : Surface
Extracts a connex sub element of a non connex entity which is the nearest from another element.

Example
Open_body.1\Surface.2=
near(Open_body.1\Sweep.1, point(0mm,50mm,0))

extrude(curve, direction, length, length, boolean) : Surface
Extrudes a wireframe profile in a given direction.

Example
Open_body.1\Surface.2=
extrude(Open_body.1\Sketch.1, direction(1,0,0), 0mm, 50mm, true)

extrude(surface, direction, length, length, boolean) : Surface
Extrudes a surface in a given direction. The result is the skin of the generated volume.

Example
Open_body.1\Surface.2=
extrude(Open_body.1\Surface.1, direction(1,0,0), 0mm, 50mm, true)

revolve(curve, line, angle, angle) : Surface
Revolves a wireframe profile around a given axis.

Example
Open_body.1\Surface.2=
revolve(Open_body.1\Sketch.1, Open_body.1\Line.1, 0deg, 90deg)

revolve(surface, line, angle, angle) : Surface
Revolves a surface around a given axis. The result is the skin of the generated volume.

Example
Open_body.1\Surface.2=
revolve(Open_body.1\Surface.1, Open_body.1\Line.1, 0deg, 90deg)

loft(sections: list, orientations: list)
Creates a loft from several sections.

Example
Open_body.1\Surface.2=
loft(List(Open_body.1\Sketch.1,Open_body.1\Sketch.2), List(1,1))

loft(sections: list, orientations: list, guides: list)
Creates a loft from several sections and several guides.

Example
Open_body.1\Surface.2=
loft(List(Open_body.1\Sketch.1,Open_body.1\Sketch.2), List(1,1), List(Open_body.1\Line.1,
Open_body.1\Line.2))

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugat1013.htm

Wireframe Constructors

● spline(pt: Point, ...): Curve
Creates a spline from several points.

Example
Open_body.1\Curve.1 =
spline(Open_body.1\Point.1, Open_body.1\Point.2, Open_body.1\Point.3)

● intersect(crv: Curve, crv: Curve) : Point
Constructs the point where two curves intersect.

Example
Open_body.1\Point.6 =
intersect(Open_body.1\Curve.1 ,Open_body.1\Curve.2)

● intersect(crv: Curve, su: Surface) : Point
Constructs the point where a curve and a surface intersect.

Example
Open_body.1\Point.7 =
intersect(Open_body.1\Spline.1 ,Open_body.1\Extrude.1)

● intersect(su: Surface, su: Surface) : Curve
Constructs the curve where two surfaces intersect.

Example
Open_body.1\Curve.4 =
intersect(Open_body.1\Extrude.2 ,Open_body.1\Extrude.1)

● curveparallel(crv: Curve, su: Surface, offset: Length) : Curve
Constructs the curve parallel to another curve. The surface specified in the second argument is the support.

Example
Open_body.1\Curve.4 =
curveparallel(Open_body.1\Spline.1 , Open_body.1\Extrude.2 ,20mm)

● corner(crv1: Curve, crv2: Curve, support: Surface, radius: Length, orientationcrv1: Boolean,
orientationcrv2: Boolean, trim: Boolean : Curve
Constructs a corner between two curves. The arguments 5 and 6 should be used to scan the possible
solutions. See the Generative Shape Design User's Guide for more information on corners.

Example
Open_body.1\Curve.6 =
corner(Open_body.1\Curve.1 ,Open_body.1\Curve.2, `xy plane` ,
50mm,true,true,false)

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugat1013.htm

Part Measures

smartVolume and smartWetarea refer to intermediate states of a solid. smartVolume does not
compute the volume of each pad contained in a PartBody but the total volume.
Example: Given a PartBody containing 3 pads: The volume of Pad.1 = 0.1m3, The volume of
Pad.2=0.1m3 and the volume of Pad.3=0.1m3. The Volume of Pad.3 displayed will be Pad.3=0.3M3.
The volume of Pad.3=the Volume of Pad.1+ the volume of Pad.2+ the volume of Pad.3.

Note that this applies also to smartWetarea (the total wet area is computed).

● smartVolume(elem: Solid, ...): Volume
Returns the volume of a solid.

Example
Total_Volume=
smartVolume(PartBody)

● smartWetarea(elem: Solid, ...) : Area
Returns the wet area of a solid.

Example
Total_Area=
smartWetarea(PartBody\Pad.1)

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugat1013.htm

Plane Constructors

plane(point, point, point) : Plane
Creates a plane through 3 points.

Example
Open_body.1\Plane.1=
plane(Open_body.1\Point.1,Open_body.1\Point.2,Open_body.1\Point.3)

plane(a:Real, b:Real, c:Real, d:Length) : Plane
Creates a plane from its equation aX+bY+cZ=d.
Example
Open_body.1\Plane.1=
plane(1,0,0,50mm)

creates the plane of X=50mm equation.

plane(line, line) : Plane
Creates a plane through 2 lines.

Example
Open_body.1\Plane.1=
plane(Open_body.1\Line.1,Open_body.1\Line.2)

plane(point, line) : Plane
Creates a plane through a point and a line.

Example
Open_body.1\Plane.1=
plane(Open_body.1\Point.1,Open_body.1\Line.1)

plane(curve) : Plane
Creates a plane through a planar curve.

Example
Open_body.1\Plane.1=
plane(Open_body.1\Curve.1)

planetangent(surface, point) : Plane
Creates a plane tangent to a surface at a point.

Example
Open_body.1\Plane.1=
planetangent(Open_body.1\Sweep.1, Open_body.1\Point.1)

planenormal(curve, point) : Plane
Creates a plane normal to a curve at a point.

Example
Open_body.1\Plane.1=
planenormal(Open_body.1\Spline.1, Open_body.1\Point.1)

planeoffset(plane, length, boolean) : Plane
Creates an offset plane from another at a given distance. Set orientation boolean to false to change the side of
the created plane regarding the reference plane.

Example
Open_body.1\Plane.2=
planeoffset(Open_body.1\Plane.1, 50mm, false)

planeoffset(plane, point) : Plane
Creates an offset plane from another passing through a point.

Example
Open_body.1\Plane.2=
planeoffset(Open_body.1\Plane.1, Open_body.1\Point.1)

planeangle(plane, line, angle, boolean) : Plane
Creates an angle plane. Set orientation boolean to false to change the side of the created plane regarding the
reference plane.

Example
Open_body.1\Plane.2=
planeangle(Open_body.1\Plane.1, Open_body.1\Line.1, 30deg, true)

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugat1013.htm

Analysis operators

● energy (Case: StaticSolution)
Computes the global energy in a static case solution.

● misesmax (Case: StaticSolution)
Computes the maximum value of the nodal VonMises stress.
Example
misesmax.1=misesmax("Finite Element Model\Static Case Solution.1")

● dispmax (Case: StaticSolution)
Computes the nodal maximum displacement.
Example
length.1=dispmax("Finite Element Model\Static Case Solution.1")

● frequency (Case: FrequencySolution)
Computes a given frequency.
Example
Frequency.1=Frequency("Finite Element Model\Frequency Case Solution.1")

● frequencies (Case: FrequenciesSolution)
Computes all the frequencies.
Example
FrequenciesList.1=Frequencies("Finite Element Model\Frequencies Case Solution.1")

● globalerror (Case: StaticSolution)
Computes the global error percentage of a static case.
Example
percentage.1=globalerror("Finite Element Model\Static Case Solution.1")

● bucklingfactors (Case: BucklingSolution)
Computes a list of buckling factors.
Example
Bucklingfactors.1=BucklingFactors("Finite Element Model\Buckling Case Solution.1")

● dispmaxongroup (Case: AnalysisResults, Group:Group): Length
Computes the nodal maximum displacement. It applies to a group of items.

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugat1013.htm

Mathematical Functions
Sample (illustrates interpolations): KwrInterpolations.CATPart

● abs(Real): Real
Calculates the absolute value of a number.

● ceil(Real): Real
Returns the smallest integer value that is greater than or equal to the value specified in the argument.

● floor(Real):Real
Returns the largest integer value that is less than or equal to the value specified in the argument.

● int(Real):Real
Returns the integer value of a number.

● let
Assigns a value to a temporary variable (let x = 30 mm)

● min(Real,Real):Real, max(Real,Real)
Returns the minimum or maximum of a set of values specified in the argument.

● sqrt(Real):Real
Returns the square root.

● log(Real):Real
Returns the logarithm.

● ln(Real):Real
Returns the natural logarithm.

● round(Real):Real
Returns a rounded number.

● exp(Real):Real
Returns the exponential.

● LinearInterpolation(arg1:Real, arg2:Real, arg3:Real) : Real
Should be used when creating a parallel curve from a law.
Example:
1 - Create a line in the Generative Shape Design workbench
2 - Access the Knowledge Advisor workbench and create the law below:
FormalReal.1 = LinearInterpolation(1,9,FormalReal.2)
3 - Back to the Generative Shape Design, create a parallel curve. Select the Law mode and specify the law
above as the one to be applied.

● CubicInterpolation(arg1:Real, arg2:Real, arg3:Real) : Real
Should be used when creating a parallel curve from a law.
Example:
1 - Create a line in the Generative Shape Design workbench
2 - Access the Knowledge Advisor workbench and create the law below:
FormalReal.1 = CubicInterpolation(1,50,FormalReal.2)
3 - Back to the Generative Shape Design, create a parallel curve. Select the Law mode and specify the law
above as the one to be applied.

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrInterpolations.CATPart

● mod(Real,Integer): Real
Enables the user to retrieve the remainder of the division of the integer part of the real number by the
integer.

● Cos(Real):Real, cosh (Real): Real
Calculates the cosine(cos) or hyperbolic cosine(cosh).
Example
Real.1 = cos(PI*1rad/4)
Real.1 = cos(45deg)

● tan(Real): Real, tanh(Real): Real
Calculates the tangent(tan) or hyperbolic tangent (tanh).

● sin(Real):Real, sinh(Real):Real
Calculates the sine or hyperbolic sine.

● asin(Real):Real, asinh(Real):Real
Calculates the arcsine or hyperbolic arcsine.

● acos(Real):Real, acosh(Real):Real
Calculates the arccosine or hyperbolic arccosine.

● atan(Real):Real, atanh(Real):Real
Calculates the arctangent or hyperbolic arctangent.

For these methods to be efficient, you should use real numbers only.

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugat1013.htm

Creating a Formula

This task explains how to create a formula specifying that the external radius of a hollow
cylinder is twice its internal diameter. Note that the radius of a sketch can be defined by a
formula provided it is declared as a constraint.

Make sure the Relations option is active in the
Tools->Options...->Infrastructure->Part Infrastructure->Display tab.

1. Open the KwrStartDocument.CATPart document.

2. Click the icon to display the f(x) dialog box . Make sure that the Incremental box

is unchecked.

Method 1

❍ Double-click the PartBody\Sketch.1\Radius.3\Radius parameter in the

parameter list. The Formula Editor is displayed.

❍ Enter the PartBody\Hole.1\HoleLimit.1\Depth*2 relation in the

formula field. Go to Tips and Techniques for information on how to

manipulate parameters and formulas.

❍ Click OK in the Formula Editor.

Method 2

❍ Select the PartBody\Sketch.1\Radius.1\Radius in the parameter list.

❍ Click Add Formula. The Formula Editor is displayed.

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrStartDocument.CATPart
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugat3002.htm

❍ Enter the PartBody\Hole.1\HoleLimit.1\Depth*2 relation in the

formula field. Go to Tips and Techniques for information on how to

manipulate parameters and formulas.

❍ Click OK in the Formulas Editor.

3. Click Apply to update the document.

4. Click OK to close the dialog box.

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugat3002.htm
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugat1013.htm
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugat3200.htm

Specifying a Measure in a Formula

The purpose of this task is to explain how to specify that the value of a Length type parameter is equal
to the curvilign abcissa of a point located on a curve.

Measures, i.e. values captured from the geometry area can be used in formulas. Here are some
examples of measures that can be used in formulas:

● Distance between two points.

● Total length of a curve.

● Length of a curve segment - between a point and the origin or between a point and the curve
extremity.

● Length of a curve segment - between two points.

● Area of an extruded surface.

1. Check the Load extended language libraries box in the Tools->Options->General-

>Parameters and Measure->language tab.

2. Open the KwrMeasure.CATPart document. The whole document has been created using the

Generative Shape Design product. The Extrude.1 and Extrude.2 surfaces are extruded from the

Spline.1 and Spline.2 curves. The point whose abscissa is to be measured is Point.5. The origin of

the curve where Point.5 is located on is Point.8

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrMeasure.CATPart

3. Click the Formula icon. The f(x) dialog box is displayed.

4. Create the CurveLengthFromOrigin parameter.To do so, proceed as follows:

❍ Select the Length item with Single Value in the New Parameter of type list, then

click New Parameter of type. The new parameter appears in Edit name or value of

the current parameter.

❍ Replace the Length.1 name with CurveLengthFromOrigin, and click Apply.

5. Specify that the value of CurveLengthFromOrigin is the abscissa of Point.5:

a. Select the CurveLengthFromOrigin parameter in the parameters list, then click Add

Formula. The Formula editor is displayed.

b. Select the Measures item from the Dictionary list.

c. In the list of measures, double-click the length(Curve,Point,Boolean) item. The length

function is added to the Formula Editor.

d. Fill in the Formula editor field as indicated below.

1. The three arguments are: a curve to be selected from the geometry area, a point

to be selected from the geometry area and a boolean.

2. Position the cursor where the first argument is intended to be typed. Then double-

click the Spline.2 feature in the specification tree. The curve argument is added to

the length definition.

3. Position the cursor where the second argument is intended to be typed. Then

double-click the Point.5 feature in the specification tree. The point argument is

added to the length definition.

4. Type a boolean for the third argument: True if the length is to be calculated

from the origin, False if the length is to be calculated from the curve end.

5. Click OK to confirm the formula definition. You are back to the Formulas dialog

box. The CurveLengthFromOrigin formula and value(47.5mm) are added to the

parameter list.

e. Click OK to add the parameter as well as its formula to the document.

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugat3200.htm

Referring to External Parameters in a Formula

This scenario shows how to use external parameters in a formula.

In a formula, you can use parameters defined in external documents. This works between any
types of document. For example, in a CATPart document, you can specify a formula referring to
parameters defined in a CATDrafting document. External parameters can also be used when
working within an assembly.

Prior to carrying out this scenario, make sure that the Keep link with selected object option
is checked (Tools->Options...->Infrastructure->Part Infrastructure->General).

1. Open the KwrStartDocument.CATPart document as well as the

KwrImportParameter.CATPart document. Select the Window->Tile Vertically

command from the standard menu bar. Both documents are displayed.

2. Make active the KwrImportParameter document. Click the icon to display the f(x)

dialog box.

3. Create a parameter of Length type and click the Add Formula button. The formula editor

is displayed.

4. In the KwrStartDocument specification tree, select the Hole.1 feature. The External

parameter selection dialog box is displayed.

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrStartDocument.CATPart
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrImportParameter.CATPart

5. In the External parameter selection dialog box, select the Diameter object in the

external parameter list. Then click OK. The Length.1 definition is carried forward to the

formula editor. (Click the picture below to enlarge it.)

6. Complete the formula definition as indicated below:

Length.1 = Diameter*0.45

7. Click OK in the formula editor. You are back to the Formulas dialog box. In the

parameter list, the Length.1 parameter value is modified according to the formula

specified. In the KwrImportParameter specification tree, the External Parameters node

is added. Expand this node to display the Diameter parameter.

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/images/kwrexternalparametersinformula1NLS.gif

8. Click OK to add the formula to the KwrImportParameter.CATPart document and exit the

dialog.

9. Select the Edit->Links command from the standard menu bar. The displayed dialog box

confirms that there is a link between the KwrImportParameter\Length.1 object and the

KwrStartDocument\PartBody\Hole.1\Diameter object.

10. Click Isolate in the Links dialog box, then click OK. In the

KwrImportParameter.CATPart specification tree, the External Parameters node can no

longer be expanded and the Diameter parameter is added below the Parameters node.

11. Select the Edit->Links command from the standard menu bar. A message box informs

you that the active document has no external links.

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugat3200.htm

Using the Equivalent Dimensions Feature

This scenario explains how to use the Equivalent Dimensions Feature. The scenario described below is divided
into the following steps:

● The user apply constraints to an existing sketch.

● The user uses the Equivalent Dimensions feature to create a list of Length type parameters that will have
the same value.

To know more about the Equivalent Dimensions feature, see Getting Familiar with the Equivalent Dimensions
Interface.

1. Open the KwrEquivalentDimensions.CATPart. The following image displays:

2. In the specification tree, expand the PartBody node and double-click Sketch.1 to access the sketcher.

3. Double-click the Constraint icon () to constraint some lines of the sketch (see graphic below).

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugformula0002.htm
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugformula0002.htm
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrEquivalentDimensions.CATPart

4. In the Knowledge toolbar, click the Equivalent Dimensions icon (). The Equivalent Dimensions

Edition window displays.

5. Click the Edit List... button. In the opening window, use the arrow key to select the following

parameters and click OK when done.

❍ Length.34

❍ Length.36

❍ Length.37

6. In the Equivalent Dimensions Edition window, set the value to 150mm and click OK.

7. Exit the Sketcher. The sketch is modified accordingly and the EquivalentDimensions.1 feature displays

below the Relations node.

8. Double-click Value=150mm twice in the specification tree. The Edit Parameter window displays.

9. Enter 140mm and click OK.

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugat3200.htm
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugformula0002.htm

Formulas: Useful Tips
The Incremental option of the formula editor

The Incremental option allows you to restrict the list of parameters displayed in the dictionary. Select a feature
either in the tree or in the geometry area. Only the first level of objects right below the selected feature will be
displayed in the dictionary. If the Incremental option is unchecked, all the objects below the selected feature are
displayed.

The Incremental mode is useful when you work with large documents and when the parameter lists are long.

Tips about the formula editor

To help you write a formula, the formula editor provides you with a dictionary. This dictionary exposes the list of
parameters and functions you can use to define a formula. Depending on the category of objects to be referred
to in the formula, the dictionary is divided into two or three parts. To insert any definition in the formula editor,
just double-click the object either in the dictionary or in the tree. If you double-click a function in the dictionary,
its signature is carried forward to the formula editor. Only the argument definitions are missing.

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugformula0003.htm
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugat3200.htm

Working with the Check Feature

A check is a set of statements intended to inform the user if certain conditions are fulfilled or not. A check does
not modify the document it is applied to. A check is a feature. In the document specification tree, it is displayed
as a relation that can be activated and deactivated. Like any feature, a check can be manipulated from its
contextual menu.

Creating a Check
Using the Check Editor

Performing a Global Analysis of Checks
Using the Check Analysis Tool

Using Rules and Checks in a Power Copy
Creating Sets or Relations

Updating Relations using Measures

Creating a Check

This task explains how to create a check.

1. Open the KwrFormula0.CATPart document, select the root item in the specification tree

and access the Knowledge Advisor workbench.

2. Click the Check icon . The first Check Editor dialog box is displayed.

3. Replace the default name with Cylinder_Check. If needed, add some comments to the

Description field.

If you want to add the check to be created to a specific relation set, specify a

destination. To do so, see Creating Sets of Relations. By default, the check is created

right below the Relations node.

4. Click OK. The Check Editor is displayed.

5. Select a type of check. Enter the message you want to be displayed in the information

or warning box in case the check is not verified.

6. Enter the check statements in the edition window. You can simply Copy/Paste the

following statements into the edition window:

Relations\Formula.1\Activity == false

7. Click Apply to test your check syntax. If the information message displays, the check

syntax is correct.

8. Click OK to add Cylinder_Check to the relations node in the specification tree. A red

icon is displayed in the specification tree meaning that the check is not valid.

file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrFormula0.CATPart

9. Deactivate Formula.1, the check icon turns to green in the specification tree.

Three parameters related to a check are displayed in the "Formulas" dialog box:
● The activity

● The severity

● The result

 When you select the result parameter, the icon indicating whether the check is valid or
not is displayed opposite the value field. Double-clicking this icon opens the check
editor.
To know more about the Check Editor, see Using the Check Editor.

To know more about the Check Editor, see Using the Check Editor.

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugat3002.htm#ActivateFormula

Performing a Global Analysis of Checks

This task explains how to perform an analysis of Knowledge Expert and Knowledge Advisor Checks.
The scenario is divided into 2 major steps:

● parameters, formulas and checks are created,

● the checks analysis is run and the checks that failed are corrected.

To know more about the Global Analysis tool and the Check Report, see Using the Check Analysis
Tool and Customizing Check Reports.

● For the check report to be correctly generated, go to Tools->Options->General-
>Parameters and Measure ->Report Generation, and select:

- The Input XSL file under Input XSL. (An XSL file is provided by default. Click here to
get a description of the generated XML file.)

- The parameters you want to appear in the report under Report Content.

- The Output directory under Output Directory.

1. Open the KwrCheckAnalysis.CATPart file. From the Start->Knowledgeware menu, access

the Knowledge Advisor workbench.

2. Create a parameter of Length type and assign it a formula. To do so, proceed as follows:

❍ Click the icon. The formula editor opens.

❍ Select Length in the scrolling list to define the type of the parameter, click the New

parameter of type button, change the name of the parameter (Length in this scenario),

and click the Add Formula button. The Formula Editor opens.

file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrCheckAnalysis.CATPart

❍ Under Dictionary, select

Measures, and double-

click

distance(Body,Body).

Position the cursor

before the coma and

double-click Point.1 in

the specification tree or

in the geometrical area.

Position the cursor after

the coma and double-

click Point.2 in the

specification tree. Click

OK, Yes (when

prompted for an

automatic update),

Apply, and OK.

3. Create a parameter of Volume type and assign it a formula. To do so, proceed as follows:

❍

Click the icon. The formula editor opens.

❍

Select Volume in the scrolling list to define the type of the

parameter, click the New parameter of type button, change the

name of the parameter (Volume in this scenario), and click the

Add formula button.

❍

Under Dictionary, select Part Measures, and double-click

smartVolume. Position the cursor between the parentheses and

select PartBody in the specification tree. Click OK, Yes (when

prompted for an automatic update), Apply, and OK.

The parameters and the

associated formulas are created

(click the graphic opposite to

enlarge it)

4. Access the Knowledge Advisor workbench, click the Check icon (), change the name of

the check (Length in this scenario), and click OK. The Check Editor opens.

5. Enter the following script in the editor, then click Apply and OK.

Length > 150mm

The Knowledge Advisor Check is
created (click the graphic opposite
to enlarge it).

6. Access the Knowledge Expert workbench, click the Expert Check icon, and change the name

of the check (HoleCheck in this scenario). The Expert Rule Editor opens.

7. In the Condition tab, enter the following script:

H:Hole

Editor H.Diameter > 15mm

8. Click the Correction tab, select VB Script in the scrolling list and enter the following script in

file:///E|/www/meidocr12/Doc/online/kwrug_C2/images/kwrParametersLargeNLS.gif
file:///E|/www/meidocr12/Doc/online/kwrug_C2/images/kwrAdvisorCheckLargeNLS.gif

the editor:

Dim aHole as Hole
Set aHole = H.parent.Item(H.Name)
Dim diam As Length
Set diam = aHole.Diameter
diam.Value = 16
MsgBox("Correction performed on "&H.Name)

9. In the Correction Comment field of the Correction tab, enter the following string, and click

OK:

Holes diameter should be greater than 15mm.

10. Select the Rule Base under the Relations node and click the Expert Check icon, change the

name of the check (DraftandHole in this scenario), and click OK. The Expert Check Editor

opens.

11. In the Condition tab, enter the following script, then click Apply and OK.

H:Hole ; D:Draft

Editor D.Activity AND H.Diameter > 12mm

The checks are created (click
the graphic opposite to enlarge
it).

12. Click the icon in the toolbar. The Global Analysis Tool opens.

13. Click the icon to update the status of the checks. The Checks lights turn to red in the

file:///E|/www/meidocr12/Doc/online/kwrug_C2/images/kwrExpertRulesandAdvisorRulesLargeNLS.gif

specification tree.

14. Click the icon. An xml page opens indicating the items that failed. To know more about

this report, see Customizing Check Reports.

15. Click the icon to launch the correction method specified when creating the Expert check

(See step 9). The checks have been corrected.

Only the Advisor check (Length) could not be corrected: The value of the Length parameter

is 100.175 mm (as indicated in the report) whereas it should be superior to 150mm (as

indicated in the body of the check).

16. To correct the check, modify the value of the Length parameter. To do so, proceed as

follows:

● Double-click Point.1 in the geometrical area. The Point definition window opens.

● In the H: field, change the value of the point to 150mm. Click Apply and OK. The
light of the check turns to green indicating that the check is passed.

[

Using the Check Analysis Tool

The Global Analysis Tool is designed to manage Expert and Advisor checks wherever they may be located in the
specification tree. It helps end-users understand the validation status of their designs and allows navigation by
checks or violations and highlights failed components. The user can:

● Access information concerning failing items

● Gather information concerning objects and checks

● Perform automatic corrections if need be.

The Global Analysis tool can be accessed at the session level by clicking the icon in the toolbar. This icon
provides the user with a simple Checks status:

All the checks are updated and could be fired successfully.

The checks need to be updated.

All the checks are updated and at least one of them is incorrect.

Check Analysis Tool Window

Click the icon in the toolbar to access the Check analysis window.

Filter section

This option enables the user to apply a filter to the checks or to the items that failed.

Check Only the Expert and Advisor checks that failed when updating
the check report are displayed.

Failure All the items that failed when updating the check report are
displayed.

Help section

To display the help section associated with each item of the list, double-click the desired item. The following
view is displayed:

The check and the items that it controls
are displayed in the view as well as its
current status.

The items entered when creating the
check are displayed:

● Associated comments

● Type

● Attributes

● Variables

● Name

● Owner of the check...

In the graphic above, the selected check is TestHole, it checks the holes of the CATPart file (3 of them do not
pass the check because their diameters is not superior to 15mm), and the attributes are displayed
corresponding to the data entered when creating the check.

Note that it is also possible to select the items associated to
the check.
To do so, double-click the desired item in the view: The Help
section shows the information concerning this item (see
graphic opposite.)

Toolbar

Click this icon to generate the customizable check report. To know more about the check report, see
Customizing Check Reports.

Click this icon to solve the checks created in your document.

Click this icon to launch the correction method specified in the Check Editor when creating the check.
For an example, see Performing a Global Analysis of Checks.

Click here to display the URL associated to the object, or to assign an URL to an object. To know
more, see Associating URLs and Comments with Parameters or Relations.

Introducing the Default Check Report

The default check report presents the Expert and Advisor checks that failed.

This panel lists the
checks that failed and
presents a percentage
of the failed items per
Expert Check.

Advisor Checks report

The Advisor checks
panel lists the Advisor
checks that failed and
shows the following
elements:
- the body of the check
(Length>150mm here)
- the item(s) on which
the check operates
(here, the Length
formula).

Expert Checks report

The Advisor checks
panel lists the Expert
checks that failed and
shows the following
elements:
- the Input items
checked by the check
operation.
- the item(s) that failed
(here Hole.1, Hole.2,
and Hole.3).

Remember that this report should not be used to generate macros or other files. It is provided as
information only.

[]

Customizing Check Reports
The reports generated by the Global Check Analysis Editor can be customized.

You can choose to display a xml or a html report.

Displaying a HTML report

To generate a html report when performing the check analysis, go to Tools->Options->General-
>Parameters and Measure and select the Report generation tab. Select Html in the Select Configuration
of the check report area.

In this case, only the Check Advisor, the Check expert and the Passed objects options are available in the
Report content area. You can specify the output directory containing the generated HTML report in the Select
output directory field.

Select Html if you use a Netscape browser.

Displaying a XML report

To display a XML report when performing the check analysis, go to Tools->Options->General->Parameters
and Measure and select the Report generation tab. Select Xml in the Select Configuration of the Check
Report area. The following window opens:

The Report generation tab is made up of 4 different fields: The Input XSL, the Report Content, the Select
output directory, and the HTML options fields.

Input XSL field

This field enables the user to select the XSL style sheet that will be applied to the generated XML report. The
StyleSheet.xsl file is the default XSL file, but you can use your own template.

Report content field

Failed Checks If checked, the generated report will contain information about the failed
checks only.

All Checks If checked, the generated report will contain information about all the
checks contained in the document.

Check advisor
If checked, the generated report will contain information about all the
Knowledge Advisor checks contained in the document.

Parameters
information If checked, the generated report will contain information about the

parameters of the Advisor checks.

Check expert If checked, the generated report will contain information about all the
Knowledge Expert checks contained in the document.

Passed objects If checked, the generated report will contain information about the

objects that passed the Expert checks as well as information about the
parameters of these objects (diameter, depth, pitch,...).

Objects
information

If checked, the generated report will contain information about all the
objects contained in the Expert checks as well as information about the
parameters of these objects (diameter, depth, pitch,...).

Output directory field

This field enables the user to select the output directory containing the generated XML report.

HTML options field

This option is available for Windows only. It enables the user to define if the report will be opened in a CATIA
session (in this case, the check box should be checked) or if it will be opened in an Internet Explorer session (in
this case, the check box should remain unchecked.)

Note that it is highly recommended not to use this report as a basis for macros or for other
applications. It is only provided for information purposes.

[

Using the Check Editor
The Check Editor is intended to help the user enter the check body using the Dictionary. It is made up of 3 different areas:

Three different types of checks can be used:

● The silent checks

● The information checks

● The warning checks

Depending on the type of check and the result of the check, you will be warned as follows:

Check verified Check not verified

Relation icon in the
specification tree
Silent check no message displayed no message displayed

Information check no message displayed
the message specified at check creation is
displayed in an information box

Warning check no message displayed the message specified at check creation is
displayed in a warning box.

In the Check Editor, you can:

● Restrict the list of parameters displayed in the dictionary: To do so, go to the specification tree, simple click the
feature you want to display the parameters for. If the 'Incremental' option is selected, only the first level of
parameters located right below the selected feature are displayed. If not, all the parameters at all levels are
displayed.

● Insert the feature definition in a check: To do so, go to the specification tree, and double-click the feature you want to
insert the definition for.

● Check whether the check syntax is correct by clicking Apply.

●
Erase the contents of the edition window by clicking the icon.

● Add the check to the document by clicking OK.

To know more about the Dictionary, see Using the Dictionary. To know more about checks, see Creating a Check.

[]

Working with the Rule Feature

A rule is a set of instructions, generally based on conditional statements, whereby the relationship between
parameters is controlled. In addition, depending on the context described by the rule instructions, actions can
be executed:

● To set a value or a formula to parameters, including feature activity

● To display information panels

● To launch Visual Basic macros stored in external files or in the V5 document.

● To affect points, curves and surfaces and thus allow contextual and automatic topological changes

In the specification tree, the rule is displayed as a relation that can be activated or deactivated. Like any
feature, a rule can be manipulated from its contextual menu.

A rule is executed when one of its input parameters has changed or when one of its input features has changed
and if the user requires the update of the rule.

The consequence is that it is impossible for the user to completely control when the rule is to be fired. As a
result, rules should only manipulate parameters and features and should be used to control the status of a
design (change of parameters and geometry).

If the user wants to control when the action takes place, he should use the Reaction feature.

Creating a Rule
Using the Rule Editor

Instantiating Relations from a Catalog
Using Rules and Checks in a Power Copy

Creating Sets of Relations
Updating Relations Using Measures

Using the Dictionary

[

Creating a Rule

The task described below explains how to create a rule which retrieves the abscissa of a point and,
depending on the coordinate value, displays a message or another.

This scenario uses two special functions allowing you to retrieve the coordinates of a point. These
functions can be accessed from the Measures item of the Dictionary.
To know more about the Dictionary, see the Using the Dictionary.

1. Open the KwrMeasure.CATPart document. The whole document has been created using the

Generative Shape Design product. The extruded surfaces are extruded from the Spline.1 and

Spline.2 curves. The point whose coordinates are to be retrieved and tested is Point.5.

2. From the Start->Knowledgeware menu, access the Knowledge Advisor workbench.

3. Use the editor to create three Length type parameters: Point5X, Point5Y and Point5Z.

4. Click the icon. In the first dialog box which is displayed, enter a rule name (MeasureRule for

example). If need be, replace the default comments. If you want to add the rule to be created to

a specific relation set, specify a destination. To do so, see Creating Sets of Relations.

5. Click OK. The Rule Editor is displayed.

6. Enter the rule below in the edition window.

file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrMeasure.CATPart

if Open_body.1\Point.5.coord(1) > 0mm
Message("Point.5 abscissa is positive")
else
{
 Open_body.1\Point.5.coord(Point5X, Point5Y, Point5Z)
 Message("Point.5 abscissa is: # ", Point5X)
}

7. In the rule above, you can retrieve the Point.5 definition (Open_body.1\Point.5) by double-

clicking the feature in the specification tree.

8. Click OK. The message "Point.5 abscissa is: 0mm" is displayed.

9. Edit the Point.5 feature (double-click the object in the specification tree for example) and replace

the Point.5 X value with 10 mm. The rule is in a to-be-updated status. See Updating Measures

for information on relations to be updated.

10. Re-access the Knowledge Advisor workbench, then click the icon. A message box informs

you that "Point.5 abscissa is positive").

To know more about the Rule Editor, see Using the Rule Editor.

[

Using Rules and Checks in a Power Copy

This task explains how to use rules and checks in a Power Copy.

Rules and checks as well as other relations can be applied to a document by retrieving them
from another document provided they have been stored in a power copy. For further
information on the power copy mechanism, see the Generative Shape Design User's Guide.

1. Open the KwrMeasurePCopy.CATPart document. If need be, access the Generative

Shape Design workbench.

2. In the standard menu bar, select the

Insert->Advanced Replication Tools->PowerCopy Creation... command. The

Power Copy definition window is displayed.

3. In the specification tree, select the Rule.1 and Check.1 relations. Both relations are

carried forward onto the Power Copy definition panel. Click OK in the Power Copy

creation panel. Save and close your document.

4. Open the KwrSplineInPcopy1.CATPart document and access the Generative Shape

Design workbench.

5. Select the Insert->Instantiate From Document... command from the standard

menu bar. The Select PowerCopy dialog box is displayed. Select the document which

contains the power copy storing the Rule.1 and Check.1 relations and click Open. The

Insert Object dialog box is displayed.

6. Select the Spline.1 feature either in the specification tree or in the geometry area. Click

OK. A message box launched by the check is displayed informing you that the Spline

Length is < 100mm. Both relations are carried forward to the specification tree and the

check icon is red. The rule has not been fired.

7. Open the KwrSplineInPcopy2.CATPart document and repeat the same operation (from

step 5). An information box displays the Spline Length indicating that Rule.1 is fired.

This time, the check icon is green is the specification tree.

Rules and checks can be stored in catalogs and instantiated later in a document. See
Instantiating Knowledgeware Relations from a Catalog

file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrMeasurePCopy.CATPart
file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrSplineInPcopy1.CATPart
file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrSplineInPcopy2.CATPart

Creating Sets of Relations

This task explains how to create sets of relations below the Relations node of the specification
tree.

Using this capability enables you to regroup relations into categories. When you create a
relation, you are prompted to enter a destination. i.e. a feature you add the new relation to.

Formulas, design tables, rules and checks can all be created into relation sets. When no relation
set has been created, the destination field of the relation editor is by default initialized to the
Relations node.

1. Create a Part and from the Start->Knowledgeware menu, access the Knowledge

Advisor workbench.

2. Click the icon and click the Relations node, the Relations.1 (or Relations.n)

relation set is added to the specification tree right below the Relations node.

3. Click the Rule or the Check creation icon. The first dialog box displayed is similar to the

one displayed when you create a relation right below the Relations node except that you

must specify a destination.

To do so, select the value specified in the Destination field of the relation editor, then

select the Relation Set you want to add a relation to. This results in a modification of

the destination path in the relation editor (partname\Relations.n is replaced with

partname\Relations\Relations.n).

4. Click OK to display the next dialog box and enter the relation body.

5. After you have finished specifying the new relation, click OK in the editor dialog box. In

the specification tree, you can expand the feature which represents the relation set. A

new relation has been added below this relation set.

Updating Relations Using Measures

This task explains how to update relations using measures.

A relation using measures is to be updated when the symbol is displayed opposite the
relation in the specification tree.

Example

MeasureRule requires an update

MeasureRule does not need to be updated

To update the rules, proceed as follows:

●

Click the icon. To do this you must be in the Knowledge Advisor workbench.

-or-

● Select the Measure Update command from the Relations node contextual menu.

You can do this in any workbench.

All the document relations are then updated.

[

Instantiating Relations from a Catalog

The scenario developed below explains how to instantiate a check stored in a catalog into a
CATPart document.

Formulas, rules and checks can be stored in a catalog. They can then be reused in a document
by using an instantiation mechanism. For more information about catalogs, see the
Infrastructure User's Guide.

1. Open the Formula_005_Start.CATPart file.

2. In the Tools toolbar, click the icon. The catalog browser is displayed.

3. Click the icon to open the CatalogFormula.catalog catalog. The catalog browser

looks something like the one below (you may need to expand the Knowledge node to

display the three relations Formula.1, Check.1, Check.2 - what you see in the left-hand

part of the Catalog Browser depends on the last interactions you have carried out with

this dialog box).

4. Double-click the Check.1 object. The dialog box below is displayed.

file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/Formula_005_Start.CATPart
file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/CatalogFormula.catalog

5. Rename the Check.1 check by using the Name field. Enter HeightCheck for example.

6. The 'Hauteur' input is highlighted. In the part specification tree, select the "Hauteur"

parameter. The Rayon input is now highlighted. In the specification tree, select the

"Rayon" parameter. Click OK and Close. The HeightCheck is added to the specification

tree and, depending on the values assigned to the Height (Hauteur) and Radius

(Rayon) parameters, a message can be displayed.

7. Double-click the HeightCheck relation twice in the specification tree. The relation below

is displayed in the check editor:

 Hauteur >= Rayon.

The relations of a catalog must be instantiated one-by-one in a document.

[

Using the Rule Editor
The Rule Editor is intended to help the user key in the check body using the Dictionary. It is made up of:

In the Rule Editor, you can:

● Restrict the list of parameters displayed in the dictionary: in the specification tree, simple click the feature
you want to display the parameters. If the 'Incremental' option is selected, only the first level of parameters
right below the selected feature are displayed, otherwise, all the parameters at all levels are displayed.
Suppose your document contains an Open_body feature which itself is made up of several Shape Design
points. When the 'Incremental' box is unchecked, selecting the Open_body feature in the specification will
display all the parameters related to the points (the parameters which defines the coordinates are included in
the list). When the 'Incremental' box is checked, selecting the Open_body feature displays only the first level
of parameters below the Open_body (the point coordinates are not displayed).

● Insert the feature definition in a rule: in the specification tree, double click the feature you want to insert the
definition.

● Check whether the rule syntax is correct: click Apply.

●
Erase the contents of the edition window: click the icon.

● Add the rule to the document: click OK.

To know more about the items displayed in the Dictionary, see Using the Dictionary or select one of
the items and press the F1 key in Catia.
To know more about rules, see Creating a Rule.

Using the Knowledgeware Language
Writing Formulas - Rules & Checks - Overview

Constants
Comments

Temporary Variables
Units

Operators
Object Methods

[

Writing Formulas
A formula is a one-line statement that you can write either by typing directly the appropriate syntax in the
editor field or by selecting items from the editor dictionary list. The formula syntax is easy to use and learn.

The period is generally used as a separator between the whole numbers and the fractional part of a
number. Using a comma as a separator in place of the period is not recommended in real values intended
to be used directly in relations.
Example: Real1 = 2,1 + 5,4 is not allowed whereas Real1 = Real2 + Real3 is allowed regardless of the
separator used when valuating Real2 and Real3.

Writing Rules and Checks
Rules and checks are multi-line statements that you can write either by typing directly the appropriate syntax
in the editor field or by selecting items from the editor dictionary list. Here is a description of the syntax to be
used. The mathematical and trigonometric functions as well as the functions used to manipulate strings are the
same as for formulas.

Conditional Statements

Rules

if ... else ... else if
Conditionally executes a group of statements, depending on the value of an expression. You can use
either block form syntaxes:

if condition statements [else elsestatements]

or

if condition
 { statements }
[else if condition-n
 [{ elseifstatements }]] . . .
[else
 [{ elsestatements }]]

You can use the single-line form (first syntax) for short, simple rules. However, the block form (second
syntax) provides more structure and flexibility than the single-line form and is usually easier to read,
maintain, and test.
The else and else if clauses are both optional. You can have as many else if statements as you want
below a block if, but none can appear after the else clause. Block if statements can be nested that is,
contained within one another.

Checks

statement1 => statement2 (if statement1 then statement2)
Displays a message (if type is Warning or Information) and turns to red in the specification tree each time
statement2 is invalid as statement1 is fulfilled.

OK => KO

KO => KO

KO => OK

OK => OK

[

Comments
The /* and */ comment characters are supported.

/* Rule created by CRE 05/03/99 */
if PartBody\Sketch.1\Radius.3\Radius > 45mm
 {
 LaunchMacroFromFile("Macro1.CATScript")
 }
else
/*
 LaunchMacroFromFile("Macro2.CATScript")
*/
 Message("No macro launched")

[

Object Methods

Description

Describes the parent of all mechanical features.

Attributes
ID Owner

Name NamedURLs

UserInfoComment

Methods
AbsoluteId Method AttributeType Method

GetAttributeInteger GetAttributeBoolean

GetAttributeString GetAttributeReal

ID Method HasAttribute

IsOwnedBy Method IsOwnedByString Method

IsSupporting Method Name Method

Query Method SetAttributeInteger

SetAttributeBoolean SetAttributeReal

SetAttributeString

Example

1. Create a part with several holes.
2. Add a real type parameter ("Real.1" for example) to one of the hole features. To do this, you must use

the Knowledge Advisor product.
3. Create the rule below:

● List.1 is the name of the list on which the calculation will be performed.

● PartBody is the body on which the search will be carried out

● Hole is the Type.

● x.Diameter>50mm is the expression.

/* This rule resets the diameter of the hole */
/* which has "Real.1" as its parameter to the Real.1 value */
(for all) H:Hole
if H->HasAttribute("Real.1")
H.Diameter = 1mm*(H->GetAttributeReal("Real.1"))

You can use all the GetAttributexxx methods in that way.

● Add one or more drafts to the part.

● You can write the rule below:

(for all) Dr:Draft
/* Displays the names of the Drafts which have PartBody as their names */

[

Attributes

Id
Defines the feature identifier, i.e. the name primarily assigned to the feature at creation before any renaming
has been done.

Owner
Defines the parent feature.

Name
Defines the feature name.

NamedURLs
Describes the URL that the user can add to a relation by clicking the Comment and URLs icon in the Knowledge
Advisor workbench.

UserInfoComment
Describes the comment that the user can add in the Comment and URLs dialog box when adding a URL to a
relation in the Knowledge Advisor workbench.

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyughlpObject.htm

AttributeType Method

Returns the attribute type in the form of a string.

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyughlpObject.htm

AbsoluteId Method

Retrieves the path of a feature.

Syntax

feature.AbsoluteId(): String

Example

String.2=PartBody\Pad.1.Id() + PartBody\Pad.1.AbsoluteId()

Sample

KwrTopology.CATPart

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrTopology.CATPart
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyughlpObject.htm

GetAttributeBoolean Method
Returns the value of a boolean type parameter added to a given feature by using the Knowledge Advisor
product. parameterName is the name of the boolean type parameter. It should be put between quotation marks
(").This method enables to read:

● The attributes added to parameters using the Parameters Explorer.

● The real attributes added to objects.

● The User Properties of a product.

Syntax

feature.GetAttributeBoolean(String): Boolean

where the argument is name of the attribute.

Example

Message ("The value of the Boolean.1 attribute of # is #",
PartBody\Pad.1.Name(),
PartBody\Pad.1.GetAttributeBoolean("Boolean.1"))

Sample

KwrObject.CATPart

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrObject.CATPart
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyughlpObject.htm

GetAttributeInteger Method
Returns the value of an integer type parameter added to a given feature by using the Knowledge Advisor
product. parameterName is the name of the string type parameter. It should be put between quotation marks (").
This method enables to read:

● The attributes added to parameters using the Parameters Explorer.

● The real attributes added to objects.

● The User Properties of a product.

Syntax

feature.GetAttributeInteger(String): Integer

where String is name of the attribute. This name should be put between double-quotes.

Example

Integer.3=PartBody\Hole.1 .GetAttributeInteger("Integer.2")

Sample

KwrObject.CATPart

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrObject.CATPart
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyughlpObject.htm

GetAttributeReal Method
Returns the value of a real or Length (in m) type parameter added to a given feature by using the Knowledge
Advisor product. parameterName is the name of the string type parameter. It should be put between quotation
marks ("). This method enables to read:

● The attributes added to parameters using the Parameters Explorer.

● The real attributes added to objects.

● The User Properties of a product.

Syntax

feature.GetAttributeReal(String): String

where String is name of the attribute. This name should be put between double-quotes.

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyughlpObject.htm

GetAttributeString Method
Returns the value of a string type parameter added to a given feature by using the Knowledge Advisor product.
parameterName is the name of the string type parameter. This method enables to read:

● The attributes added to parameters using the Parameters Explorer.

● The real attributes added to objects.

● The User Properties of a product.

Syntax

feature.GetAttributeString(String): String

where String is name of the attribute. This name should be put between double-quotes.

Example

String.2 =PartBody\Pad.1 .GetAttributeString("String.1")

Sample

KwrObject.CATPart

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrObject.CATPart
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyughlpObject.htm

HasAttribute Method
Determines whether the attribute specified in the argument belongs to the feature the method is applied to.

Syntax

feature.HasAttribute(String): Boolean

where String is name of the attribute. This name should be put between double-quotes.

Example

Boolean.2 =
PartBody\Hole.1.HasAttribute("Real.1")

Sample

KwrObject.CATPart

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrObject.CATPart
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyughlpObject.htm

Id Method
Applies to a feature. Retrieves the identifier of a feature (not NLS).

Syntax

feature.Id(): String

Example

String.2=PartBody\Pad.1.Id() + PartBody\Pad.1.AbsoluteId()

Sample

KwrTopology.CATPart

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrTopology.CATPart
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyughlpObject.htm

IsSupporting

Function indicating if the object passed in argument is supported or not.

Example

H:Hole
H->IsSupporting("TaperedHole") == true

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyughlpObject.htm

Name Method
Applies to a feature. Retrieves the name of a feature. Cannot be used to rename a feature.

Syntax

feature.Name(): String

Example

String.1=PartBody\Pad.1.Name()

Sample

KwrTopology.CATPart

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrTopology.CATPart
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyughlpObject.htm

IsOwnedBy Method
Determines whether the feature specified in the argument is the parent of the feature the method is applied to.
featureName should be put between quotation marks (").

Syntax

feature.IsOwnedBy(): Boolean

Example

Boolean.1=PartBody\Hole.1.IsOwnedBy(PartBody)

Sample

Topology.CATPart

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrTopology.CATPart
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyughlpObject.htm

IsOwnedByString Method
Applies to a feature. Determines whether a feature belongs to another. This method returns a string.

Syntax

feature.IsOwnedByString(): Boolean

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyughlpObject.htm

Query

Query()
Function used to search for the features located below the feature to which it applies and that verifies the
specified expression and that adds these features to the list.
In the example below, the result of the search will return the holes of PartBody whose diameters are greater
than 50mm.
Example: List.1=PartBody.Query("Hole","x.Diameter>50mm")
Where:

● List.1 is the name of the list on which the calculation will be performed.

● PartBody is the body on which the search will be carried out

● Hole is the Type of the searched feature.

● x.Diameter>50mm is the expression.

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyughlpObject.htm

SetAttributeBoolean Method
Assigns the value specified in the second argument to the parameter whose name is specified in the first
argument. parameterName is the name of the boolean type parameter whose value is to be modified. It should be
put between quotation marks ("). booleanvalue is either TRUE or FALSE.

Syntax

feature.SetAttributeBoolean(String, Boolean): Void

where the first argument is name of the attribute while the second is the value to be assigned to it.

Example

if PartBody\Pad.1\Boolean.1 <> true
PartBody\Pad.1.SetAttributeBoolean("Boolean.1", true)

Sample

KwrObject.CATPart

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrObject.CATPart
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyughlpObject.htm

SetAttributeInteger Method
Assigns the value specified in the second argument to the parameter whose name is specified in the first
argument. parameterName is the name of the integer type parameter whose value is to be modified. parameterName
should be put between quotation marks (").

Syntax

feature.SetAttributeInteger(String, Integer): Void

where the first argument is name of the attribute while the second is the value to be assigned to it.

Example

if PartBody\Hole.1\Integer.1 <> 3
PartBody\Hole.1 .SetAttributeInteger("Integer.1", 3)

Sample

KwrObject.CATPart

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrObject.CATPart
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyughlpObject.htm

SetAttributeReal Method
Assigns the value specified in the second argument to the parameter whose name is specified in the first
argument. parameterName is the name of the real type parameter whose value is to be modified. parameterName
should be put between quotation marks (").

Syntax

feature.SetAttributeReal(String, Real): Void

where String is name of the attribute and Real the value to be assigned to the parameter.

Example

if PartBody\Hole.1\Real.1 <> 3
PartBody\Hole.1 .SetAttributeReal("Real.1",3)

Sample

KwrObject.CATPart

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrObject.CATPart
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyughlpObject.htm

SetAttributeString Method
Assigns the value specified in the second argument to the parameter whose name is specified in the first
argument. parameterName is the name of the string type parameter whose value is to be modified. parameterName
and stringvalue should be put between quotation marks (").

Syntax

feature.SetAttributeString(String, String): Void

where the first argument is name of the attribute while the second is the value to be assigned to it.

Example

if PartBody\Pad.1.GetAttributeString("String.1") <> "String1"
PartBody\Pad.1 .SetAttributeString("String.1","This is a test")

Another syntax for the same rule is:

if PartBody\Pad.1\String.1 <> "String1"
PartBody\Pad.1.SetAttributeString("String.1","This is a test")

Sample

KwrObject.CATPart

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrObject.CATPart
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyughlpObject.htm

Messages and macros

Message Function Question Function

LaunchMacroFromDoc Function LaunchMacroFromFile Function

VBScriptRun

[

LaunchMacroFromDoc Function
Executes a macro stored in a document from a rule.
A macro is stored in a document when you don't specify any external file before recording it.

Warning: It is up to the user to check that the macro which is run is not going to cause an infinite loop or result
in a system crash.

Syntax

LaunchMacroFromDoc(MacroName)

Example

LaunchMacroFromDoc("Macro1")

[

LaunchMacrofromFile Function
Executes a macro CATScript from a rule.

Warning: It is up to the user to check that the macro which is run is not going to cause an infinite loop or result
in a system crash.

Syntax

LaunchMacroFromFile("MacroName.CATScript")

Example

LaunchMacroFromFile("Macro1.CATScript")

[

Run Method
Runs a macro with arguments.

Warning: It is up to the user to check that the macro which is run is not going to cause an infinite loop or result
in a system crash.

Syntax

VB Script.Run(valueOrFeature:ObjectType,...): Void

where valueOrFeature is the macro argument name. There can be several arguments.

Example

You must have created the VB Script.1 macro prior to creating the rule below:

if PartBody\Pad.1.HasAttribute("String.1") == true
`VB Script.1` .Run(PartBody\Pad.1 .GetAttributeString("String.1"),PartBody\Pad.1.Name())

Sample

KwrObject.CATPart

[

file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrObject.CATPart

Message Function
Displays a message in an information box. The message can include one or more parameter values.

Syntax

Message(String [# String1 # String2 ..., Param1Name, Param2Name, ...]) : Void

The Message function takes one required argument and several optional arguments depending on whether
parameter values are to be displayed in the message.

Arguments Description

String Required. String to be displayed in the information box (should be put in
quotes).

String1, Param1Name... Optional. When parameter values are to be displayed within the message, the
arguments should be specified as follows:

● one string in quotes including a # symbol wherever a parameter value is
to be displayed

● as many [, parameter name] statements as parameter values declared with
a "#" in the message.

Use the "|" symbol to insert a carriage return in a message.

Example 1

Message("External radius is: # | Internal Radius is: #",
PartBody\Sketch.1\Radius.3\Radius,
PartBody\Hole.1\Diameter)

Example 2

Note that this function can be used along with the buildMessageNLS function

Message (BuildMessageNLS("KwrCATCatalog.CATNls","Zero"))

Where x,y,z are parameters.

Note that you can use the Message function together with the BuildMessageNLS function for your
question to display in your language. To use this function, use the following syntax:

Message(BuildMessageNLS ("x","xx",a,b))

● x corresponds to the name of the CATXXX.CATNls file where you will find the NLS message (it is the
CATXXX name without the CATNls extension).

● xx corresponds to the key name in this catalog.

● a and b are the arguments (values that will be replaced in the message)

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyughlpString.htm

Question Function
Displays a message in a dialog box, waits for the user to click a button and returns a value indicating which
button the user clicked (true if Yes was clicked, false if No was clicked)

Syntax

Question(String [# String1 # String2 ..., Param1Name, Param2Name, ...]): Boolean

The Question function takes one required argument and several optional arguments depending on whether
parameter values are to be displayed in the message.

Arguments Description

String Required. String to be displayed in the dialog box (should be put in quotes).

String1, Param1Name... Optional. When parameter values are to be displayed within the message, the
arguments should be specified as follows:

● one string in quotes including a # symbol wherever a parameter value is
to be displayed

● as many [, parameter name] statements as parameter values declared with
a "#" in the message.

Use the "|" symbol to insert a carriage return in a prompt.

Example

Boolean2 =
Question("SketchRadius is # | Do you want to change this value ?",
PartBody\Sketch.1\Radius.3\Radius)

Note that you can use the Question function together with the BuildMessageNLS function for your
question to display in your language. To use this function, use the following syntax:

question(BuildMessageNLS ("x","xx",a,b))

● x corresponds to the name of the CATXXX.CATNls file where you will find the NLS message (it is the
CATXXX name without the CATNls extension).

● xx corresponds to the key name in this catalog.

● a and b are the arguments (values that will be replaced in the message)

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyughlpString.htm

Temporary Variables
Temporary variables can be declared by using the let keyword. A temporary variable does not persist as a
parameter after the rule execution is finished.

/*Rule created by CRE 08/23/99*/
let x = 5 mm
if PartBody\Hole.1\Diameter > x
{
PartBody\Hole.1\Activity = false
}

For non digital values, the type has to be indicated:

let S(Surface)
S= split (...,...)

Temporary variables should be declared at the beginning of the rule, before any conditional instruction is
specified.

let S1(Surface)
let S2(Surface)
let S3(Surface)

S1 = Split ...
S2 = ...
S3 = ...

[

Units
Units are all provided in the dictionary.

1. Pay attention to unit consistency when writing a rule or a check.
2. Units are written with an underscore instead of the usual "/" (example N_m2 instead of N/m2).

[

Operators

Arithmetic operators

+ Addition operator (also concatenates strings)

- Subtraction operator

* Multiplication operator

/ Division operator

() Parentheses (used to group operands in expressions)

= Assignment operator

** Exponentiation operator

Logical Operators

<and Logical conjunction on two expressions

or Logical disjunction on two expressions

Comparison Operators

<> Not equal to

== Equal to

>= Greater or equal to

<= Less than or equal to

< Less than

> Greater than

[

Constants
The following constants are specified or recognized by CATIA when programming rules and checks. As a result,
they can be used anywhere in a relation in place of the actual values.

● false - one of the two values that a parameter of type Boolean can have

● true - one of the two values that a parameter of type Boolean can have

● PI - 3.14159265358979323846 - The ratio of the circumference of a circle to its diameter.

● E - The base of natural logarithm - The constant e is approximately 2.718282.

[

 Useful Tips

Relations

When using some objects, you need to indicate the destination of the formulas and the rules that valuate the parameters of
these objects. If you valuate a time parameter in a kinematic simulation for example, the relation will not be located below
the Relations set but in the mechanisms and commands tree of the simulation.

Relations Updates

The evaluation of relations containing measures can be integrated to the Part update only. In a .CATProduct or in a
.CATProcess file, to create a parameter

● which value is the result of a relation containing measures

● updated when modifying the measure inputs, proceed as follows:

1. Create the relation containing the measure at the Part level.

2. Integrate the relation evaluation to the Part update.

3. At the Product or the Process level, create a relation that valuates the parameter by using the result parameter of the

relation created at the Part level. To get an example, see KwrUpdate.CATProduct.

4. Perform a local update at the Relations level.

Rules

Geometrical Features and Rules

In a rule using features that need the geometry to return the type (such as extrudes), when the feature is
deactivated, the type cannot be returned. To solve the problem, use the Set command to indicate the type in
the rule. To know more, see the KwrSetType.CATPart file.

Rules and Update Cycle

file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrUpdate.CATProduct
file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrSetType.CATPart

This configuration is allowed since a modification of the
parameter activity does not impact the formula update. But:

● In such a case, it is highly recommended to use the
reaction feature.

● If you want to use a rule, do not deactivate and reactivate
the activity parameter.

● When working with a UDF feature, make sure that you
have inserted the relation set when defining the UDF.

Parameters

Deleting parameters used in a relation

If you delete a parameter used in a relation, a "clone" parameter will be created.

Applying the same formula to several parameters

If you want to apply the same formula to several parameters, use the Equivalent Dimensions feature and value this feature
by a formula. To know more, see Using the Equivalent Dimensions Feature.

[

Advanced Tasks

The tasks described below are intended for advanced users.

From the Version 5 Release 8 on, the behavior feature is replaced with the reaction feature that
provides the user with more powerful capabilities.

Working with Advanced Knowledge Advisor
Relations

● Creating and Using a Knowledge Advisor

Law

● Associating URLs and Comments with

Parameters or Relations

● Launching a VB macro with Argument

● Solving a Set of Equations

● Using the Equation Editor

● Using the Knowledge Inspector

Working with Design Tables
● Introducing Design Tables

● Getting Familiar with the Design Table

Dialog Box

● Creating a Design Table from Current

Values

● Creating a Design Table from a Pre-

Existing File

● Interactively Adding a Row To the Design

Table External File

● Controlling Design Tables Synchronization

● Storing a Design Table in a PowerCopy

● Useful Tips

Working with the Reaction Feature
● Using the Reaction Feature Dialog Box

● Creating a Knowledge Advisor Reaction

● AttributeModification Event

● BeforeUpdate Event

● DragAndDrop Event

● File Content Modification Event

● Insert Event

● Inserted Event

● Instantiation Event (UDF or
Document Template)

● Remove Event

● Update Event

● ValueChange Event

● Using a Knowledge Advisor Action

Working with the List Feature
● Using the List

● Using the List Edition window

file:///E|/www/meidocr12/Doc/online/kwrug_C2/kwrugat1064.htm

Working with the Loop Feature
● Introducing the Loop Feature

● Getting Familiar with the Loop Edition
Window

● Using the Scripting Language

● Creating a Loop

● Creating a PowerCopy containing a Loop

● Loop Feature: Useful Tips

Use Cases
● The Ball Bearing

● System of Three Equations in Three Variables

Working with Advanced Knowledge Advisor
Relations

Creating and Using a Knowledge Advisor Law
Associating URLs and Comments with Parameters or Relations

Launching a VB macro with Argument
Using the Equation Editor
Solving a Set of Equations

[

Creating and Using a Knowledge Advisor Law

The scenario which is developed below illustrates how to create a Knowledge Advisor law, then use a
combination of a Generative Shape Design law and a Knowledge Advisor law in the same relation.

● The Evaluate method is to be used to calculate a parameter value when this parameter is

defined by a Generative Shape Design law.

● Note that the result you obtain on completion of this task depends on the initial lines. You can

replay the scenario with different lines and see how it affects the result.

A Knowledge Advisor law is a relation whereby a parameter is defined with respect to another. Both
parameters involved in a law are called formal parameters. Formal parameters and laws are specifically
designed to be used in the creation of shape design parallel curves. A Generative Shape Design law can
be used in a Knowledge Advisor law.

Laws only specify a relation between one parameter and another single parameter.

1. From the Start->Shape menu, access the Generative Shape Design workbench.

2. Define a working support using the Work on Support icon ().

3. Select the yz plane, for example, and click OK in the updated Work on Support dialog box without

modifying any other parameter.

4. Click the Line icon (). The Line dialog box is displayed.

5. Right-click in the Point 1 field, and choose the Create point command.

6. The Point Definition dialog box is displayed, the Point type and Plane fields being automatically

filled.

7. Create a point at H:0mm and V:0mm, and click OK.

8. Repeat the operation, right-click the Point 2 field from the Line dialog box to create another point

at H:100mm and V:0mm, then click OK in the Point Definition dialog box.

9. Click OK in the Line dialog box to create the line.

10. Access the Knowledge Advisor workbench and click the icon. If need be, use the Tools-

>Customize command to access the icon. A dialog box similar to the one below is displayed.

This editor is similar to the other relation editors. If need be, replace the default values specified

in the dialog box fields.

11. Click OK. The law editor is displayed. The right-hand part allows you to create the parameters to

be used in the law. The left-hand part is the law edition box.

12. Click the New Parameter of type button to create two real type parameters FormalReal.1 and

FormalReal.2, then enter the law below into the edition window:

FormalReal.1 = 5*sin(5*PI*1rad*FormalReal.2)+ 10

13. Click OK to add the law to the document. The Law.1 feature is added to the specification tree

right below the Relations node.

14. Select your document root feature and re-access the Generative Shape Design workbench.

15. Click the icon to create a curve parallel to the line created at the very beginning of the

scenario. The Parallel Curve Definition dialog box is displayed.

16. Select the line that you previously created as the reference Curve.

Note that only positive laws, i.e. with positive values only, can be used when
creating parallel curves (positive is to be understood as "strictly positive").

18. Click the Law ... button. The Law Definition dialog box displays.

19. Select the Law.1 in the specification tree and click OK.

20. Click OK twice. A curve parallel to the selected one is created, taking the law into account.

The KwrCreatingaLaw.CATPart sample illustrates this scenario.

file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrCreatingaLaw.CATPart

Associating URLs & Comments with Parameters
and Relations

You can associate one or more URLs with user parameters and relations. This task is only
meaningful when the active document contains user parameters and/or relations.

Adding URLs

1. Click the icon (Comment & URLs). The URLs & Comment dialog box is

displayed.

2. In the specification tree, select a parameter or a relation type feature.

3. If need be, select the Edit tab. Then click the Add button. The Add URL dialog box is

displayed.

4. Enter a URL (http:\\www.foo.org for example) and a name. Click OK.

5. If need be, repeat this operation to add a new URL.

6. After you have finished entering all the required URLs, add a comment, then click OK to

exit the dialog. The URLs and comment are added to the selected feature.

● When working with the URLs & Comment dialog box, please note that the
icon located in the Knowledge Advisor toolbar enables the expert user to access a
URLs & Comment dialog box where he can add, delete and modify the URLs. The

 icon available in the general toolbar is for the end-user only.

● To check that a user parameter or a relation has been assigned URLs, you just

have to click the Comment & URLs icon and select the appropriate object in the

specification tree.

Searching for a URL

When an object has been assigned a certain number of URLs, the Explore tab of the URLs &

Comment dialog box provides you with a way to search for a given URL.

1. Click the icon and select an object (user parameter or relation) in the

specification tree.

2. Select the Explore tab. The list of all the URLs assigned to the selected object is

displayed.

3. Enter the name (or a sub string) of the URL to be searched for in the Search field. Then

click Search. If the specified URL is found, "yes" is displayed in the Found column for

every object containing a URL matching the search and only the first object to be found

is highlighted.

[

 Launching a VB Macro with Arguments

The task below illustrates how to add arguments to a macro.

Macros with arguments are features that can be:
● stored in CATPart or CATProduct documents,

● stored in catalogs. Double-click them in the catalog to run them,

● called from a rule (VBScriptRun) or a reaction. In this case, arguments are passed from the
rule.

The icon enables you to access the macro editor. In addition to the usual 'edit and run'
capabilities, this editor allows you to:

● specify arguments

● carry forward a feature definition to the editor just by selecting the feature either in the tree
or in the geometry area.

1. Click the icon. The script editor is displayed.

2. Copy/paste the script below into the editor:

Dim oActiveDoc As Document
Set oActiveDoc = CATIA.ActiveDocument

If (InStr(oActiveDoc.Name,".CATPart")) <> 0 Then

Dim oParams As Parameters
Set oParams = oActiveDoc.Part.Parameters

Dim strParam1 As StrParam
Set strParam1 = oParams.CreateString("FirstName", "")

Dim strParam2 As StrParam
Set strParam2 = oParams.CreateString("LastName", "")

strParam1.Value = fname
strParam2.value = lname

Else MsgBox "The active document must be a CATPart"
End If

End Sub

3. Enter the fname and lname arguments in the field located between the parentheses.

The arguments must always be separated by a comma.

4. Click OK to add the macro to the document. A 'VB Scripts' sub-node is added to the

specification tree below the Relations node. A VB Script object is added below this sub

node.

5. Double-click the VB Script object. The Script Editor is displayed. The Insert Object

Resolution button allows you to retrieve a feature definition. The VB Script.2 macro of

the KwrObject.CATPart sample illustrates how to use this capability.

6. Click Run script.... The Select Inputs for Script Arguments is displayed.

7. If need be, select fname in the argument list, then enter a string into the value field (no

quotation marks). Then select lname and enter the lname value.

8. Click OK to run the script. The two string type parameters are added to the document.

Their values are those you have just specified.

Note that the VB script features with arguments are provided with a contextual menu enabling
the user to launch the script.

[

4. Click here to open the result file.

file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrObject.CATPart

Solving a Set of Equations

This task explains how to solve a set of equations using the operators and functions of the knowledgeware
language. This scenario can be run from any document.

● In a set of equations, the semi-colon (;) is used as a separator.

● Note that the equations set capabilities require the Knowledge Advisor product.

1. Create two real type parameters x and y. Both parameters are intended to be used as variables in a

set of equations.

2. Access the Knowledge Advisor workbench. Click the icon. In the first dialog box which is

displayed, enter the name of the relation, a comment and a destination. Then click OK. The Set Of

Equations editor is displayed.

3. Enter the set of equations below into the edition box:

y - 2 *sqrt(x) ==2;

y - 4 *x*x == 0

Now, your editor looks something like this:

The value of each parameter
is displayed first in the
Unknown parameters field,
then in the specification tree
(see below).

4. Click here to open the result file.

Using the Equations Editor
In order to improve the use of the Equations solving functions, the Equation Editor was modified. It is made up
of two tabs: the Editors tab and the Options tab.

Editors tab

The Parse arrow is used to identify the variables of the set of constraints. It must be pushed before
choosing input and output variables.

The left arrow is used to move variables from the Unknown parameters category to the Constant
parameters one.

The right arrow is used to move variables from the Constant parameters category to the Unknown
parameters one.

The Switch input/output arrow is used to swap the selected constant and unknown parameters.

● Viewer: enables you to enter the equations that you want to solve.

● Dictionary: see Using the Rule Editor.

● Members of Parameters: see Using the Dictionary.

● Members of All: see Using the Rule Editor.

● Constant parameters: Constant parameters: The value of constant parameters are set by the user and
are considered as constants by the solver. This value can be changed directly in the Value column by
clicking twice (slowly) in the Value cell.

● Unknown parameters: The value of unknown parameters will be calculated once the Apply button is
pushed.

Options tab

Algorithm
● Precision: enables you to define the

precision of the results (i.e the number of
decimal digits after the decimal point.)

● Use the Gauss method for linear
equations: accelerates the solve operation
when working with linear equations.

Termination criteria
● Maximal computation time (sec.): enables you to indicate the computation time. If the indicated time

is equal to 0, the computation will last until a solution is found.

● Show 'Stop' dialog: if checked, displays a "Stop" dialog box that will enable you to interrupt the
computation.

 Solving a Set of Equations

[

Working with Design Tables
Introducing Design Tables

Getting Familiar with the Design Table Dialog Box
Creating a Design Table from Current Values

Creating a Design Table from a Pre-Existing File
Interactively Adding a Row To the Design Table External

File
Controlling Design Tables Synchronization

Storing a Design Table in a PowerCopy
Useful Tips

If you are already familiar with CATIA and only need a quick access to information, see the CATIA
Knowledgeware Infrastructure - Tips and Techniques - Summary.

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugat3002.htm#DesignTables
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugat3002.htm#DesignTables

Introducing Design Tables
A design table:

● provides you with a means to create and manage component families. These components can be for example mechanical
parts just differing in their parameter values.

● is a tool mainly intended to ease the definition of mechanical parts. It is provided to all CATIA users. But you will make
the best use of it in a Knowledge Advisor application. A design table can be created from a CATIA document, the
document data is then exported to the design table. It can also be applied to a document, the document data is then
imported from the design table.

● is designed to drive the parameters of a CATIA document from external values. These values are stored in the form of a
table either in a Microsoft ® Excel file on Windows™ or in a tabulated text file. When using a design table the trick is to
associate the right document parameters with the right table parameters. The design table columns may not all
correspond to your document parameters and you may decide to apply only part of the design table values to your
document. By creating associations, you declare what document parameters you want to link with what table columns.

● becomes a more powerful tool when it is used with the Knowledge Advisor. You are provided with functions to read the
design table parameters. These design table functions can be used when programming your checks and rules. Using
these functions spares you all the association operations. To know more, click here.

Example

Screws are a good example of mechanical parts that can be described by a design table. To simplify, imagine they are all
described by four parameters: the head width, the head height, the body width and the body height. The sets of four
parameter values that can be assigned to a screw can be easily regrouped in a design table. This design table has as many
columns as screw parameters and as many rows as sets of parameter values. In a design table, a set of parameter values is
called a configuration and it is registered in a row.

The Excel Sheet Format (under Windows)

The values mentioned in the sheet cells have to be expressed in appropriate units. Otherwise, the right values won't be
associated with the document parameters.

Only Excel sheets created with Excel 97 and subsequent versions are supported.

If no unit is mentioned within a cell:

● the unit taken into account is the one mentioned in the first row

● and if no unit is specified in the first row, the unit taken into account is the relevant SI unit.

Here is an example of an Excel sheet:

column name column unit

When a configuration which contains empty
cells is selected, the parameters associated
with the empty cells are not modified. This
property enables you to modify parameters
but only under certain conditions.

Within a given column, you can change the units. Units can be
specified in cells.
No unit = SI

Note that it is highly recommended to choose the General format and not the Cells format in Excel.

The Tabulated Text File Format

Here is an example of a tabulated file format. You can use your favorite text editor to create this design table. Use the Tab key
to skip from one column to the other. Unit rules are the same as for the Excel sheets.

Under UNIX, it is possible to change the default design table editor. To do so, type:
export CATTextEditorDT=... (indicate the path of the editor.)

The CATIA Design Table

Once it has been read and processed by CATIA, the design table looks something like this:

 No units in column Check box to modify the activity

Displays the design table raw data. Values with units Duplicates the design table external data into the
CATIA document. Check this box whenever you intend
to re-access your design table on another platform.

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugat3300.htm

Getting Familiar with the Design Table Dialog Box

Here is the dialog box sequence you get onscreen when you click the icon in the standard toolbar.

Creation of a design table

"Create a design table from a pre-existing file" check box

Check this option whenever you want to create a design table from the values of an external file. In this case, the
created design table is made up of:

either only the columns whose name is a document parameter name. If the external file contains a column with
the "Material" name, this column will appear in the created design table as there is always a Material parameter in
a document. If the external file contains a "Length" column but no such "Length" parameter is defined in the
document, the "Length" column will not appear in the created design table. This is the "automatic" association
process.
or only the columns that have been associated one-by-one with a document parameter. If the external file
contains a "Length" column but no so-called parameter in the document, you can choose to associate the "Length"
column of the external with a parameter of the same type (a sketch radius for example).

"Create a design table with current parameter values" check box

Check this option whenever you want to create a design table from a subset of the document parameters. You just
have to select among all the document parameters the ones you want to be included as columns in the design
table. In this case, the created design table only contains a single row.

The Orientation check boxes

These options allow you to choose the design table orientation. A vertical orientation is recommended when the
design table contains many parameters.

The sheet index

From Version 5 Release 7, you can specify an Excel or Lotus sheet number.

The Destination field

All knowledgeware relations such as design tables, rules, checks or formulas, are created by default below the
Relations node. Creating a relation below a given feature may help you organize your document. To specify a
destination, select the default destination in the Destination field, then click the feature intended to be the new
destination either in the specification tree or in the geometry area.

Selection of the parameters to insert

This dialog box pops up when you check the "Create a design table with current parameter values" check box.

There are two ways to restrict the list of parameters to be displayed in the 'Parameters to insert' list. You can use
the:

1. Filter Name field
Use the * character to specify any string to be included in a parameter name. Specifying *Len* will display
in the "Parameters to insert" part of the dialog box all the parameters having the Len substring in their
name.

2. and the Filter Type field.

When you click OK in the dialog box above, the "Select the pathname of the file to be created" panel is displayed.

Selection of the file to be created

Use this dialog box to specify the .xls (Windows) or .txt file to be created. Specify the .xls extension when filling
out the 'File name' field. Then click Open to display the design table dialog box.

Design table dialog box

The 'Configurations' tab

The current configuration as well as its number (< configuration number >) are highlighted. To change the current
configuration, you just have to click the new configuration in the design table.
A single row design table is created when you generate a design table with the current parameter values.

● The Filter
The filter is a means to help you query for a configuration meeting specific criteria. Click the "Edit... " button to
display the "Design Table Request Editor". See Using the Dictionary for information on how to use the syntax
provided by the dictionary.
In a query, you can specify a condition referring to the design table parameters as well as the parameters
external to the design table.

● The "Activity" check box
A design table is created active by default. The activity check box provides you with a way to deactivate the
design table to be created.

● The "Edit table..." push button
Click this button to display the edit table to be created. Depending on whether you have selected a .xls
extension or not, you will launch a Microsoft Excel application or your default text editor for a .txt file.

● The "Duplicate data in CATIA model" check box
Check this box whenever you intend to reuse your document on an operating system different from the one
used to create the design table. That way, your design table data will be duplicated into your document.

The "Associations" tab

This tab provides you with a way to associate the document parameters with the columns of the external design

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugat1013.htm

table. The left part of the dialog box allows you to associate parameters with the design table columns while the
right part displays the list of associated parameters.

● The "Create parameters..." push button
When a parameter is referred to in the design table but has not been created in the document, clicking this
button allows you to create a parameter in the document and associate it with the right column of the design
table.

● The "Rename associated parameters" push button

If a parameter does not have the same name as the column it is associated with, you can rename this

parameter so that it has the same name as the column. Clicking the "Rename associated parameters" push

button displays a dialog box which asks you whether you want to rename all the parameters or only a few of

them.

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugat3300.htm

Creating a Design Table from the Current
Parameters Values

A design table is a feature that you create from your document parameters or from external
data. No matter the existence of external data, you must create the design table in CATIA.
There are two ways to create a design table:

● From the current parameter values

● From a pre-existing file.

The scenario described below explains how to proceed in the first case. The design table
creation process includes the following steps:

a. Create a table from the document parameters.

b. Select the parameters to add to the design table.

c. Specify a file to contain the generated design table.

d. Edit the generated CATIA design table.

e. Apply the design table to your document.

For information on how to use the different dialog boxes related to the design table, see The
Design Table Dialog.

1. Open the KwrStartDocument.CATPart document.

2. Click the Design Table icon in the standard toolbar. The Creation of a Design

Table dialog box is displayed. See The Design Table Dialog for further information.

3. If need be replace the default name and comment for the design table.

4. Check the Create a design table with current parameter values option.

5. Click OK. The Select parameters to insert dialog box is displayed.

6. In the Parameters to insert list, select the PartBody\Pad.1\FirstLimit\Length and the

PartBody\Pad.1\SecondLimit\Length items. Then click the right arrow to add both

items to the Inserted parameters list.

7. Click OK. A file selection box is displayed.

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrStartDocument.CATPart

8. Specify the pathname of the design table to be created. Click OK in the file selection

dialog box.

The design table feature is added to the specification tree and a dialog box displays

the newly created design table. This design table contains only one configuration. By

default it is active.

If the file specified already exists, the Creation of a Design Table dialog box is

re-displayed as well as a message box asking you whether you want to

overwrite the existing file.

9. Click Edit table... to start an Excel application (under Windows) or open the text

editor under Unix.

Replace the PartBody\Pad.1\FirstLimit\Length parameter value with 80mm.

10. Save your Excel or .txt file and close your application. Some information messages are

displayed in a dialog box warning you about events related to the design table. Click

Close.

11. Click Apply into the CATIA design table dialog, the document is updated as well as

the CATIA design table. Click OK to exit the dialog and add the design table to the

document.

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugat3300.htm

Creating a Design Table from a Pre-existing File

A design table is a feature that you create using your document parameters or external data.
No matter the existence of external data, the design table must created in CATIA. There are
two ways to create a design table:

● Using the current parameter values

● Using a pre-existing file

The scenario below describes how to proceed in the second case. Here are the main steps to
follow:

a. Select the pre-existing file containing the raw data.
b. Create the associations between the document parameters and the external table

columns. You can choose to create these associations automatically.
c. Edit the generated CATIA design table.
d. Select a configuration in the generated design table. You can modify the default

configuration proposed by CATIA.
e. Apply the design table feature to your document.

For information on how to use the different dialog boxes related to the design table, see The
Design Table Dialog.

1. Open the KwrStartDocument.CATPart document.

2. Click the Design Table icon () in the standard toolbar.

The Creation of a Design Table dialog box is displayed. Enter a name (DesignTable1

for example) and a comment.

3. Check the Create a design table from a pre-existing file option. Click OK.

4. Select the KwrBallBearing.xls file, and click Open. A dialog box asks you whether you

want to perform automatic associations between the design table columns and the

document parameters which have the same name.

5. Click Yes. The Material parameter is the only one which is common to the document

parameters and to the external design table. A multi-row design table is created. The

'<' and '>' symbols denote the current configuration.

6. Select the configuration you want to apply to the document (line 4 for example). Click

Apply.

The Iron parameter value is displayed in the specification tree.

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrStartDocument.CATPart
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrBallBearing.xls

7. Click OK to end the design table creation.

The scenario below illustrates how to create a design table by associating one by one the
document parameters with the input file columns.

1. Open the KwrStartDocument.CATPart document.

2. Click the Design Table icon in the standard toolbar.

The "Creation of a Design Table" dialog box is displayed. Enter a name (DesignTable2

for example) and a comment.

3. Check the Create a design table from a pre-existing file option. Click OK. A file selection

panel is displayed.

4. Select the KwrBallBearing.xls file. Click Open. The Automatic associations? dialog box is

displayed.

5. Click No. The design table dialog box informs you that there is no associations between

parameters and columns.

Now, you have to associate one by one the document parameters with the design table

columns.

6. Click the Associations option. The table design dialog box now displays side by side the

document parameter list and the input file columns.

7. In the Parameters list, select the PartBody\Hole.1\Diameter item. In the Columns list,

select the d parameter. Then click Associate. A parameter couple is now displayed in the

Associations between parameters and columns list.

8. Repeat the same operation for the Material parameter.

Selecting a parameter or an association in the list highlights the corresponding values in

the geometry area.

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrStartDocument.CATPart
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrBallBearing.xls

The parameter list can be filtered:

❍ By clicking on a feature (either in the specification tree or in the geometry

area). All the parameter values of the selected feature (and children) are

highlighted in the geometry area. The parameter list displays only the

parameters of the selected features (and children).

❍ By specifying a string in the Filter Name field. For example, typing *ength*

displays all Length parameters

❍ By specifying a type in the Filter Type field.

The Create parameters... button allows you to create automatically parameters

and associations for items of the Columns list. The Rename associated

parameters button replaces the parameter name with the column name.

9. Click OK to end the DesignTable2 creation dialog.

The DesignTable2 feature is added as a relation to the specification tree. Double-click

DesignTable2 in the specification to edit the table. By default, the configuration <1> is

applied to the document. A new material (Aluminum) is applied to the document and

the hole diameter is modified.You can select another configuration and apply it to your

document.

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugat3300.htm

 Interactively Adding a Row To a Design Table
External File

The task described below explains how to add a row to a design table external file. The scenario
is divided into the following steps:

● The user opens the CATPart file and inserts the design table

● The user deactivates the design table and creates a new configuration

● The user adds the configuration to the design table external file

● The user activates the design table and implements the new configuration

This new function enables the user to add a contextual menu on design table feature (in the
tree) which appears only:

● If the design table is deactivated

● If the design table external file exists and is read/write

● If at least one parameter is associated.

The behavior of this command is to add a row at the end of the design table file with associated
parameters values. For not associated columns, an empty cell is added.

To carry out this scenario, the user will need the following files:
KwrAddARow.CATPart
KwrAddARow.xls

Note that this task can only be performed in an english environment.

Prior to carrying out this scenario, make sure the With value and With formula options are
checked in the Tools->Options->General->Parameters and Measure->Knowledge tab.

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrAddARow.CATPart
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrAddARow.xls

1. Open the KwrAddARow.CATPart file. The following image displays.

2. Click the Design Table icon ().

3. Click the Create a design table from a pre-existing file radio button and click OK.

4. In the opening File Selection window, select the KwrAddARow.xls file and click Open.

5. Click Yes in the Automatic associations window: The design table opens. Click OK to

close it.

6. Click the Measure update icon to update Formula.1.

7. Under the Design Tables node, double-click Configuration=1. The Edit Parameter

dialog box displays.

8. Click the Design table icon in the Edit Parameter dialog box: The Design Table window

displays.

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrAddARow.CATPart
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrAddARow.xls

9. In the dialog box, select the second configuration (line 2), click Apply, and OK twice.

10. Right-click Formula.1 in the specification tree and select the Local Update command.

11. In the Specification tree, right-click DesignTable.1 and select the DesignTable.1

object->Deactivate command. The design table is deactivated.

12. Modify the spline, to do so, proceed as follows:

● Double-click Point.1 twice in the specification tree or in the Geometry. Enter the
coordinates indicated below into the Point Definition dialog box.

● Modify the coordinates
of Point.2 and Point.3
(see table opposite)

 Point 1 Point 2 Point 3

X 0 100 50

Y 0 100 50

Z 0 -100 -226

● Click OK when done.

13. Add the new configuration to the design table. To do so, right-click DesignTable.1 in the

specification tree and select the DesignTable.1 object->Add row with current

values command.

14. Right-click DesignTable.1 and select the DesignTable.1 object->Activate command.

15. Double-click Configuration=1 under DesignTable.1 and click the Design Table icon

().

16. In the DesignTable.1 window select the configuration that you have just added and click

Apply and OK twice. The spline is updated accordingly.

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugat3300.htm
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugdesigntable0014.htm

Controlling Design Tables Synchronization

This topic aims at providing the user with short examples when working with design tables in
the following modes:

● Automatic Synchronization At Load

● Interactive Synchronization At Load

● Manual Synchronization

Automatic Synchronization At Load
When loading a model containing user design tables, if the design table files have been
modified and the external file data is contained in the model, the design table will be
synchronized automatically if this radio button is checked.

1. Open the KwrBallBearing1.CATPart file. The following image displays.

2. Click the Design Table icon (). The Creation of a Design Table dialog box displays.

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrBallBearing1.CATPart

3. Click the Create a design table from a pre-existing file option and click OK. The File

Selection dialog box opens.

4. Select the KwrBearingDesignTable.xls file and click Open. Click Yes when asked if you

want to associate the columns of the tables with the parameters.

5. Click OK to apply the default configuration.

6. Save your file and close it.

7. Open the KwrBearingDesignTable.xls file. Change the material of row 2 to Gold. Save

your file and close it.

8. Go back to Catia. Open the part: The Part is updated accordingly to your changes.

Interactive Synchronization At Load
When loading a model containing user design tables whose external source file was
deleted, this option enables the user to select a new source file or to save the data
contained in the design tables in a new file.

1. From the Tools->Options... menu, select General->Parameters and Measure and

check the Interactive Synchronization At Load option in the Knowledge tab.

2. Open the KwrBallBearing1.CATPart file. The following image displays.

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrBearingDesignTable.xls
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrBallBearing1.CATPart

3. Click the Design Table icon (). The Creation of a Design Table dialog box displays.

4. Click the Create a design table from a pre-existing file option and click OK. The File

Selection dialog box opens.

5. Select the KwrBearingDesignTable.xls file and click Open. Click Yes when asked if you

want to associate the columns of the tables with the parameters.

6. Click OK to apply the default configuration.

7. Save your file and close it.

8. Go to the directory containing the KwrBearingDesignTable.xls file and delete it.

9. Go back to Catia. Open the KwrBallBearing1.CATPart file: A dialog box displays asking

you if you want to select a new file. Click the Select button and select a new Excel file.

Manual Synchronization
When loading a model containing user design tables, if the design table files have been
modified and the external file data is contained in the model, the design table will be
synchronized if this option is checked. To synchronize both files, right-click the design
table in the specification tree and select the DesignTable object->Synchronize
command or the Edit->Links command.

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrBearingDesignTable.xls

1. From the Tools->Options... menu, select General->Parameters and Measure and

check the Manual Synchronization At Load in the Knowledge tab.

2. Open the KwrBallBearing2.CATPart file. This file already contains a design table whose

values are identical to those contained in the KwrBearingDesignTable.xls file (Note that

the KwrBearingDesignTable.xls file and the KwrBallBearing2.CATPart file should be

located in the same directory.)

3. Select the Edit->Links command to edit the Excel file path and select the appropriate

KwrBearingDesignTable.xls file. Save the file and close it.

4. Open the KwrBearingDesignTable.xls file and modify the material values for example.

Close the file.

5. Go back to CATIA. Open the KwrBallBearing2.CATPart file.

6. Select the Edit->Links command and click the Synchronize button to synchronize both

files.

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrBallBearing2.CATPart

If the Duplicate data in CATIA model option is checked, and if you choose another design
table file without using the Edit Table command when in session, the following message
displays whatever the settings:

If the Duplicate data in CATIA model option is unchecked, the synchronization occurs
automatically.

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugdesigntable0014.htm
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugat3300.htm

Storing a Design Table in a PowerCopy

This task shows how to store a design table in a power copy for later use. In this scenario, the
user wants to instantiate the inner and the outer cages of a ball bearing in a different context.
To do so, he creates a powercopy only containing the outer and the inner cages of an already
existing ball bearing.

This scenario is divided into the following steps:

● Inserting the Design Table into the CATPart file

● Creating the PowerCopy

● Instantiating the PowerCopy containing the Design Table

To carry out this scenario, the Product Knowledge Template license is required.

To carry out this scenario, you will need the following files:
● KwrBallBearing1.CATPart

● KwrBearingDesignTable.xls

To store a design table in a PowerCopy, do not forget to select the parameters pointed by the
design table.

1. Open the KwrBallBearing1.CATPart file. The following image displays.

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrBallBearing1.CATPart
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrBearingDesignTable.xls
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrBallBearing1.CATPart

Inserting the Design Table into the CATPart file

2. Click the Design Table icon () in the Standard toolbar. The Creation of a

Design Table dialog box displays.

3. Check the Create a design table from a pre-existing file radio button and click

OK. The File Selection dialog box displays.

4. Select the KwrBearingDesignTable.xls and click Open.

5. Click Yes when asked for automatic associations and click OK. The Design table now

displays below the Relations node.

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/samples/KwrBearingDesignTable.xls

Creating the PowerCopy

6. From the Start->Knowledgeware menu, access the Product Knowledge

Template workbench (if need be) and click the Create a PowerCopy icon. The

Powercopy Definition dialog box displays.

7. In the Specification tree, select the following items:

❍
DesignTable.1

❍

Shaft.1

❍

Shaft.2

❍

Shaft.3

❍

Sketch.1

❍

Sketch.2

❍

Sketch.3

❍

the Material Parameter.

❍

Click OK when done. The PowerCopy displays below the PowerCopy

node in the specification tree

8. Save your file and close it.

Instantiating the PowerCopy

9. From the File->New menu, select Part in the List of Types and click OK.

10. If need be, from the Start->Knowledgeware menu, access the Product

Knowledge Template workbench and click the Instantiate From Document icon.

The File Selection dialog box displays.

11. Select the KwrBallBearing1.CATPart file and click Open. The Insert Object dialog box

displays.

12. Select the yz plane in the specification tree and click OK. The Design Table is

instantiated

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugat3300.htm

Design Tables: Useful Tips

● A design table can only be created from non-constrained parameters, i.e. from parameters which are
neither referred to in an active design table nor used in any other active relation.
If you keep the Activity option checked for DesignTable0 and you try to create another design table, you will
have to select the parameters to add to your second design table among a restricted parameter list.
Uncheck the Activity option if you want to deactivate a design table and reuse its parameters in another
design table.

● Anytime you modify a design table, the relations that refer to this design table detect the modification and
turn to a to-be-updated status.

● As long as a design table is active, the parameters which are declared in it are constrained parameters and
you are not allowed to modify them.
Double-clicking a design table in the specification tree displays the design table with its set of configurations
and allows you to select a new configuration.

● Only parameters which are not already constrained by any other relation or by any other design table can be
used to create a design table. If a parameter is already constrained, it does not appear in the Parameters to
insert list in the design table dialog box.

● Selecting the parameters to be inserted in a design table
The Filter Name and Filter Type filters can be used to restrict the display of a parameter list. If you specify x
in the Filter Name field of the Select parameters to insert dialog box, you will display all the parameters with
the letter x in their name (xA, xB, xC, xD, xE). If you select the Renamed Parameters in the Filter Type list,
you will display all the parameters you have renamed in the Formulas dialog box (yA, xB, xA, yC, xC, yB,
yD, xD, yE, xE, TangE).
Parameters to be inserted can be multi-selected. You just have to keep on pressing the Ctrl key while you
select parameters. If you do this, the group of multi-selected parameters will be carried forward onto the
Inserted parameters list in the order in which they are displayed in the initial list.
When the design table is created, the rank of the columns fits the rank of the parameters in the Inserted
parameters list. If you want to have columns ordered in a given way in the design table, you must insert the
parameters one by one.

● Accessing the functions related to the design table
Once in the formula (rule or check) editor, select the Design Table item in the dictionary, the list of the
methods that can be applied to a design table is displayed. Select a method, then click F1 to display the
associated documentation.

[

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugat3300.htm

Using the Knowledge Inspector
The Knowledge Inspector allows you to query a design to determine and preview the results of changing any
parameters without committing themselves to actually changing the design. This "what if" analysis provides
immediate feedback that helps you experiment and refine designs.

While it is important to determine what happens when one or more parameters are changed, it is equally
significant for you to see how a design can be changed to achieve a desired result. The Knowledge Inspector
supports this by allowing you to query "how to" make a particular change.

In short, the Knowledge Inspector is a tool designed to study impacts and dependencies.

What if
(impacts)

Helps you understand to what extent changing any parameter of your design (such as material,
pressure, or a dimensional parameter) changes the operation or design of the product on which
you are working. Can be used to examine interactions of parameters with each other and with
the rules that make up the product's specifications.
A "Geometric Update" option enables you to visualize the result of your modification in the
geometry area.

How To
(dependencies) Helps you determine how your design can be changed to achieve a desired result.

 You shouldn't use the capabilities with the Knowledge Inspector.

 What If Mode
How To Mode

[

The 'What If' Mode

This task explains how to use the 'What If' mode.

1. Open the KwrFormula1.CATPart document and access the Knowledge Advisor workbench.

2. Click the Knowledge Inspector icon or select the Knowledge Inspector from the standard tool bar. The

"Knowledge Inspector" dialog box is displayed. Check the 'What If' option.

3. Select the KwrStartDocument\PartBody\Pad.1\FirstLimit\Length parameter (at this stage, don't modify its

value in the Equals field).

4. Click Apply. The following list of parameters and parameter values is displayed in the Then area.

file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrFormula1.CATPart

The first line describes the parameter which has just been selected. The other lines describe the impacted

parameters.

5. Use the Equals field to replace the KwrStartDocument\PartBody\Pad.1\FirstLimit\Length parameter value with

60mm. Click Apply. In the Then area, the parameter values are updated as follows:

The InitialValue column shows the initial parameter values (when you open the Knowledge Inspector). The

OldValue column shows the parameter values resulting from the previous 'What if' operation. The Var

(variations) columns show comparison operators between values located in adjacent columns.

6. Check the Geometric Update option to display in the geometry area the modifications resulting from the

'What If' operation. Click Apply to update the document in the geometry area.

7. Click OK to apply the values resulting from the current 'What If' operation to your document. Otherwise, click

Cancel>.

Note that:

● Using the buttons reloads in the 'Then' area the previous or next values in
the history of the 'What if" operations.

● Checking the Show All Parameters option displays all the document parameters. An f
letter in the Dvn column indicates that the parameter is constrained by a formula.

● Selecting a parameter in the Then area while the Show All Parameters is checked,
highlights the selected parameter in the parameter list above.

 Modifying a parameter value does not imply that the values of the impacted parameters are
automatically updated by a 'What If' operation. For example, if a parameter is constrained by a
formula such as:
if Parameter1 > A then Parameter2 = B
replacing the Parameter1 value with a value greater than A won't modify Parameter2 if
Parameter2 was previously set to B.

[

The 'How To' Mode

This task explains how to use the 'How To' mode.

1. Open the KwrFormula1.CATPart document.

2. Click the Knowledge Inspector icon in the standard toolbar. The Knowledge Inspector dialog box is

displayed. Check the 'How To' option. By default, only the parameters which are constrained by a formula

are displayed.

3. If need be, check the Show All Parameters to display all the document parameters.

4. Select the KwrStartDocument\PartBody\Hole.1\Diameter parameter (assuming that you would like to have

this parameter modified).

5. Click Apply or Enter. The list of parameters to be modified in order to change the Hole.1\Diameter

parameter is displayed in the 'Use' area.

6. Select the Pad.1\FirstLimit\Length parameter.

file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrFormula1.CATPart

7. Check the What If option.

8. Modify the FirstLimit\Length parameter in 'What If' mode.

9. Click OK to apply the parameter modification to your document.

 Note that:

● Checking the Show All Parameters option displays all the document parameters. An f letter in the Dvn column
indicates that the parameter is constrained by a formula.

● Selecting a parameter in the 'Use' area while the Show All Parameters is checked, highlights the selected
parameter in the parameter list above.

[

Working with the List Feature

List features can be used to manage lists of objects or parameters. These lists
can be edited interactively. The List edition window enables the user to sort
items automatically and to specify the type of objects authorized.

The list feature is integrated in the update mechanism, the size of the list is
computed automatically (it is provided with functions designed to compute
sums, areas, costs...).

The list feature can be manipulated through the language to:

● Create list

● Copy the content of a list into another one

● Add and remove elements

● Get an element

● Retrieve values from the list

● Move elements of the list to another position

Using the List
Using the List Edition Window

[

Using the List

This task explains how to use the List Feature.
In the scenario described below, the user will manipulate a plane wing to which he will add planes and
intersections. He will then create parameters and formulas to calculate the surface of the intersections and will
create a list that will compute the total area of the intersect sections.

To know more about the List Edition window, see Using the List Edition Window.
To know more about the List Feature, see Working with the List Feature.

1. Open the KwrPlaneWing.CATPart file.

2. Access the Generative Shape Design workbench.

3. Create three planes. To do so, proceed as follows:

● Click the Plane icon in the tool bar.

●

a) The Plane Definition dialog
box opens.

b) In the Plane type area, enter
the yz plane (select it in the
geometry or in the specification
tree): The yz plane is displayed in
the Reference area.

c) Indicate the required offset in
the Offset field (-50mm for
example). Click OK.

d) Repeat this operation twice
with offsets of -100 and -150mm.

(Click the graphic to enlarge it)

4. Add formulas to calculate the intersection surface of the planes with the blend. To do so, proceed as

follows:

● Click the icon. The Formulas Editor opens.

● Select Area in the scrolling list and click the New parameter of type button. Change the name
of the parameter to Area_Intersect1 and click the Add Formula button. The Formula editor
opens.

● In the Dictionary, select Measures, double-click area(Surface, ...):Area.

file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrPlaneWing.CATPart
file:///E|/www/meidocr12/Doc/online/kwrug_C2/images/kwrWingsPlanesLargeNLS.gif

● Position the cursor between the parentheses, select Wireframe constructors in the Dictionary,
and double-click intersect(Surface,Surface):Curve.

● Position the cursor before the coma and select Plane.2 in the specification tree (or in the
geometry) then select Blend.1 in the specification tree. Click OK, Yes, and OK.

● Repeat the above steps for
Area_Intersect2 and Area_Intersect3
by selecting Plane.3 and Plane.4.

(Click the graphic to enlarge it)

5. Access the Knowledge Advisor workbench, and click the List icon (). The List Edition window opens.

6. Select the 3 parameters located under

the Parameters node in the specification

tree, and click the Add button. Click

OK. Rename List.1 to Intersections for

example.

(Click the graphic to enlarge it)

7. Click OK. The list is added to the parameters.

8. Add a formula that will compute the area of the 3 planes intersections with the blend. To do so, proceed

as follows:

❍ Click the icon. Select Area in the scrolling list, click the New parameter of type

button, rename the parameter to Total_Intersection_Areas and click the Add formula

button. The Formula editor opens.

file:///E|/www/meidocr12/Doc/online/kwrug_C2/images/kwrParametersandFormulasLargeNLS.gif
file:///E|/www/meidocr12/Doc/online/kwrug_C2/images/kwrListEditionWindowLargeNLS.gif

❍ Click the List (Intersections in

this scenario) in the specification

tree: the name of the list is

displayed in the editor.

Under Dictionary, select List, and

double-click List.Sum(): Real in

the Members of List area.

Click OK twice.

The area of the 3 planes

intersections with the blend is

automatically calculated.

(Click the graphic to enlarge it)

9. Edit the list content and re-compute the total area. To do so, proceed as follows:

❍

Double-click the list (Intersections) in the specification tree: the List edition window

opens. Select Area_Intersect3, click the Remove button, and click OK.

❍
Right-click the

Total_Intersection_Areas

parameter and select Local

Update.

The area of the remaining 2

planes intersections with the

blend is automatically

calculated.

(Click the graphic to enlarge

it)

Click here to display the

result of this scenario.

file:///E|/www/meidocr12/Doc/online/kwrug_C2/images/kwrListComputationLargeNLS.gif
file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrPlaneWingResult.CATPart
file:///E|/www/meidocr12/Doc/online/kwrug_C2/images/kwrListResultLargeNLS.gif

Using the List Edition Window

The List Edition window enables the user to manage the objects he wants to add to the list he is creating. It can

be accessed by clicking the List icon ().

The window contains four different buttons and is made up of 2 columns.

Name Column indicating the name of the list.

Value/<Type> Column indicating the value of the list or the associated type.

Enables the user to add the items he selected in the specification tree or in the geometry to
the list.

Enables the user to remove items from the list.

Enables the user to move up items in the list.

Enables the user to move down items in the list.

The Number of Elements field displays the number of items contained in the list.

There are 4 different types of lists:

● Not seen lists: These lists are created by CAA users and cannot therefore be modified interactively

by the user (they are not displayed). In this case, the buttons of the List dialog box do not
display.

● Read only lists: These lists are created by CAA users and cannot therefore be modified

interactively by the user (they are in read only mode). In this case, the buttons of the List dialog
box do not display.

● Read/Write lists: These lists are created by CAA users, can be edited by the end user but they

cannot be deleted.

● User lists: These lists can be edited and deleted by the end user.

● Like for any other parameter, it is now

possible to hide and reorder lists. To do
so, right-click the list and select the
Hide or Reorder... commands.

● When clicking the List icon to create a

list, the Multi-Selection panel now
displays. To know more about this
panel, see the Infrastructure User's
Guide.

If you select an item in the List, and click another item in the specification tree or in the geometry, and
click Add, the List item will be replaced with the one you have just added.

[

Working with the Reaction Feature
The reaction is a feature that reacts to events on its source(s) by triggering an action. It is designed to cope with the
rules and the behaviors limitations and to create more associative and reactive design.

A reaction is a feature that reacts to events

The source can be:

● A selected feature (or a list of features)

● A parameter (result of a test)

Events can be:

● General events on objects (creation, deletion, update, drag and drop, attribute changes) and parameter
value changes.

● Specific events such as a power copy or a UDF instantiation/update.

● Insert/Replace component

● Object Drag and Drop

A reaction is similar to a rule in the fact that:

● It is stored in the model.

● It reacts to changes and can trigger modifications.

● It also references other objects and parameters in the document and supports the replace mechanism.

But

● Reaction features provide a better control over when the action has to be fired.

● Reactions enable the user to perform more complex actions. Since you have better control when the action
is triggered, and as you're not constrained by the update mechanism limitations, you can use all the power
of any Visual Basic API (in CATIA but also in other automation applications...), and a Visual Basic macro can
be called with arguments from an action.

● Reactions can be written to customize the update mechanism (to optimize user features, for example).

● Reactions can react to user actions (instantiation of a user defined feature), insertion of a component in an
assembly, modification of a parameter...

● Reactions can be stored in the model and can be integrated in the definition of a power copy or user feature.

Using the Reaction Feature Window
Creating a Reaction: DragAndDrop Event

Creating a Reaction: AttributeModification Event
Creating a Reaction: Insert Event

Creating a Reaction: Inserted Event
Creating a Reaction: Remove Event

Creating a Reaction: BeforeUpdate Event
Creating a Reaction: ValueChange Event

Using a Reaction with a User Feature: Instantiation Event
Using a Reaction with a Document Template: Instantiation Event

Creating a Reaction: Update Event
Creating a Reaction: File Content Modification Event

file:///E|/www/meidocr12/Doc/online/kwrug_C2/kwrugat1064.htm

Using the Reaction Feature Window

You can access the Reaction window by clicking the icon in the Knowledge Advisor workbench.

The Reaction window is made up of 3 major fields: The Source Type field, the Source field and the Action field.

Source Type

● Selection enables the user to
manually select one or more items in
the specification tree or in the
geometrical area. These items will be
displayed in the Sources field.

● Owner enables the user to link the
action with a feature of the geometry
or of the specification tree (see Using
the Knowledge Advisor Reaction
Feature: DragAndDrop Event where
the reaction feature is linked with a
Hole, for example).
To link the reaction with an object of
the geometry, click the Destination
field and select an object in the
specification tree or in the geometry.

Sources Field

A reaction is a feature that reacts to events (see Available events below) on an object called the source and that
triggers an action.

The Sources field displays the selected items with which the reaction will be linked (only available if the
Selection Source type is selected.)

Available events

The events available in this scrolling list depend on the source type selected in the Source type field. The
reaction will be fired when one of the events detailed below happens.

Available Events Explanation

AttributeModification The reaction is fired because of a change in an attribute state. Only available if
the Selection option is selected.

BeforeUpdate The reaction is fired before a feature is updated.

DragAndDrop The reaction is fired after a feature is dragged and dropped.

Insert The reaction is fired when a feature is inserted.

file:///E|/www/meidocr12/Doc/online/kwrug_C2/kwrugat1064.htm

Inserted The reaction is fired after a feature is inserted.

Instantiation The reaction is fired when a user feature is instantiated.

Remove The reaction is fired when a feature is removed.

Update The reaction is fired right after a feature is updated.

ValueChange The reaction is fired because of a parameter value change. Only available if the
Selection option is selected.

FileContentModification The reaction is fired each time the file associated to the design table is modified.

Action Field

The action is triggered by a reaction that reacts to events on an object. This field enables the user to select the
language in which he wants to write the action (VB or the Knowledge Advisor language) and to edit the action.

Edit action button

Click this button to access the Action Editor.

Action Editor

The action editor displayed depends on the language selected in the Action field.

If Knowledgeware action is selected, the window below is displayed.

The Edition pane enables the user to
enter the body of the action.

The Dictionary is divided into 2 or 3
panes depending on the selected
category:
- The left-hand one displays the
categories that can be used in an
action.
- The middle one lists the objects
belonging to the selected category.
- The right-hand one displays the
members of the selected category.

If VB action is selected, the window below is displayed.

- The Name field enables the user to enter a name for
the VB script.

- The Comment field enables the user to enter a
comment associated to the VB script.

- The Editor enables the user to enter the VB script.

- The Insert object resolution button enables the
user to select an object in the specification tree or in
the geometry and to automatically add its resolution
to the script.

(Click the graphic opposite to enlarge it.)

Creating a Reaction: DragAndDrop Event
Creating a Reaction: Insert Event

Creating a Reaction: Inserted Event

file:///E|/www/meidocr12/Doc/online/kwrug_C2/images/kwrActionVBNLS.gif

Creating a Reaction: Remove Event
Creating a Reaction: AttributeModification Event

Creating a Reaction: BeforeUpdate Event
Creating a Reaction: ValueChange Event

Using a Reaction with a User Feature: Instantiation Event
Using a Reaction with a Document Template: Instantiation Event

Creating a Reaction: Update Event
Creating a Reaction: File Content Modification Event

[

file:///E|/www/meidocr12/Doc/online/kwrug_C2/kwrugat1064.htm

Creating a Reaction: DragAndDrop Event

This task explains how to use the DragAndDrop event in a reaction feature. In the scenario below, the
user drags and drops a hole, which fires a reaction.

a) The following information are displayed in a VB box when the rule is fired:

● The type of feature.

● Its name as well as its initial diameter.

b) The user is prompted to click OK to convert the hole into a counterbored one or to click Cancel to
skip the conversion.

The Reaction capabilities require the Knowledge Advisor product.

Note that this task could be carried out in the past by using the Behavior feature which has been
replaced with the Reaction feature.

For more information about Reaction features, see Working with the Reaction Feature.

1. Create .CATPart file and a pad with a hole or open the KwrReactionPad.CATPart file.

2. Access the Knowledge Advisor workbench and click the Reaction icon

() to create a reaction. The reaction dialog box opens.

❍ In the Source

type field, select

Owner for the

Reaction to be

applied to the hole

selected in the

Destination area

(see below).

file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrReactionPad.CATPart

❍ In the Available

events list, select

DragAndDrop for

the reaction to

occur when the

hole is dragged

and dropped.

❍ In the Action field,

select VB action,

for the user to

write the action in

VB.

❍ Click the

Destination area

in the Reaction

dialog box and

select Hole.1 in the

specification tree.

3. Click the Edit Action... button, paste the following script in the editor, and click OK twice:

Set H = DroppedFeature.Parent.Item(DroppedFeature.Name)
Dim FeatureType, FeatureName, HoleType
FeatureType = TypeName(H)
FeatureName = H.Name
HoleType = H.Type
Str1 = "The feature to be dropped"
Str2 = Str1 & vbCrLf & "is a " & FeatureType & " type feature"
Str3 = Str2 & vbCrLf & "Its name is '" & FeatureName & "'"
Str4 = Str3 & vbCrLf & "Its initial diameter is "_
& H.Diameter.Value & vbCrLf
Str5=Str4 & vbCrLf &_
"Unless you click Cancel, it will be converted into a counterbored hole"
Dim MyBox
MyBox = MsgBox (Str5,1)
if MyBox = 1 then
H.Type = 2
H.HeadDiameter.Value = 20.0
H.Diameter.Value = 10.0
End If

4. Access the Part Design workbench. In the geometry, select the hole and drag and drop it. The

following dialog box appears:

5. Click OK. The hole is converted into a counterbored hole (see graphic below).

 To know more about the Reaction feature window, see Using the Reaction Feature Window.

[

 Creating a Reaction: Insert Event

This task explains how to use the Insert event in a reaction feature. In the scenario
below, the user inserts an element into the CATProduct document, which displays a
message.

The Reaction capabilities require the Knowledge Advisor product.

1. Open the KwrSyringeAssembly.CATProduct file.

2. From the Start->Knowledgeware menu, access the Knowledge Advisor

workbench and click the Reaction icon () to create a reaction. The reaction

dialog box opens.

❍ In the Source type

field, select

Selection for the

Reaction to be

applied to the

element you select

and select the

syringe in the

specification tree).

❍ In the Available

events list, select

Insert for the

reaction to occur

when an item is

inserted into the

CATProduct.

file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrSyringeAssembly.CATProduct

❍ In the Action field,

select

Knowledgeware

action and enter

the following

message:

Message("An

element was added

to your

document").

This message will

be displayed each

time you insert a

new component into

the CATProduct.

❍ Click OK. A reaction

is added to the

Relations node in

the specification

tree.

3. Double-click the root of the specification tree, select the Insert->Existing

Component... command and click the root of the specification tree. The File

selection dialog box opens.

4. Select the KwrSyringePiston.CATPart file and click Open.

5. The new element is inserted and the reaction is fired. The following message

displays:

file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrSyringePiston.CATPart

To know more about the Reaction feature window, see Using the Reaction Feature
Window.

[

 Creating a Reaction: Inserted Event

This task explains how to use the Inserted event in a reaction feature. In the scenario below,
the user inserts an element into the CATProduct document, which displays a message.

The Reaction capabilities require the Knowledge Advisor product.

1. Create a CATProduct file called Container.CATProduct and insert the

KwrSyringeContainer.CATPart file by using the Insert->Existing Component...

command. Save your file and close it.

2. Create a CATProduct file called Plunger.CATProduct, rename the root of the specification

tree to Plunger, and insert the KwrSyringePiston.CATPart file by using the Insert-

>Existing Component... command. Close the file.

3. From the Start->Knowledgeware menu, access the Knowledge Advisor workbench

and click the Reaction icon () to create a reaction. The reaction dialog box opens.

❍ In the Source type

field, select Selection

for the Reaction to be

applied to the element

you select (plunger in

this example).

❍ In the Available

events list, select

Inserted if you want

the action to be

launched when the

Plunger is inserted into

the CATProduct.

file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrSyringeContainer.CATPart
file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrSyringePiston.CATPart

❍ In the Action field,

select

Knowledgeware

action and enter the

following message:

Message("Plunger

inserted"). This

message will be

displayed after the

plunger is inserted.

❍ Click OK. A reaction is

added to the Relations

node in the

specification tree.

❍ Save the file and close

it.

4. Save the file and close it.

5. Open the Container.CATProduct file, select the Insert->Existing Component...

command. The File Selection dialog box opens. Select the Plunger.CATProduct file and

click Open. The message specified step 3 displays.

To know more about the Reaction feature window, see Using the Reaction Feature Window.

[

 Creating a Reaction: Remove Event

This task explains how to use the Remove event in a reaction feature. In the scenario below,
the user removes an element from the CATProduct document, which displays a message.

The Reaction capabilities require the Knowledge Advisor product.

1. Open the KwrSyringeAssembly2.CATProduct file.

2. From the Start->Knowledgeware menu, access the Knowledge Advisor workbench

and click the Reaction icon () to create a reaction. The reaction dialog box opens.

❍ In the

Source type

field, select

Selection

for the

Reaction to

be applied to

the element

you select

(Syringe in

this

example).

file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrSyringeAssembly2.CATProduct

❍ In the

Available

events list,

select Remove

for the reaction

to occur after

an item is

removed from

the

CATProduct.

❍ In the Action field,

select

Knowledgeware

action and enter

the following

message:

Message("An

element was

removed from your

document"): This

message will display

when you remove a

component from the

CATProduct.

❍ Click OK. A

reaction is

added to the

Relations node

in the

specification

tree.

3. Double-click the root of the specification tree, right-click the Syringe piston in the

specification tree, and select Delete. The following message displays.

To know more about the Reaction feature window, see Using the Reaction Feature Window.

 Creating a Reaction: BeforeUpdate Event

This task explains how to use the BeforeUpdate event in a reaction feature. In the scenario
below, the user optimizes the position of a point each time he modifies the length of the cable
(spline). The user creates his geometry and inserts all the components in a User Defined
Feature (UDF).
This UDF contains the geometry of a cable going through 3 points:

● The two points located at both extremities are to be specified in input.

● The coordinate of the third point is optimized in order to reach a target length for the
cable.

This target parameter is a published parameter of the UDF. The optimization is launched by
using a VBMacro with argument, called in a Reaction to the "Before Update" event of the UDF.

The Reaction capabilities require the Knowledge Advisor product.

1. Open the KwrEvent_BeforeUpdate.CATPart file: It contains 3 points and a spline (called

cable in this scenario).

file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrEvent_BeforeUpdate.CATPart

2. From the Start->Knowledgeware menu, access the Product Engineering

Optimizer workbench and click the Optimize icon (). The Optimization window

opens.

3. Enter the following data in the Optimization window:

Problem
tab

Optimization
type

Minimization

Optimized
parameter

distance

Free
parameters

Open_body.1\Point.3\Pointcoordinates.1\Z

Algorithm Simulated Annealing-Convergence speed

Termination
criteria Maximum number of updates: 100

Consecutive updates without improvements: 20

Maximum time (minutes): 5

Constraints
tab

New
constraint

`Open_body.1\Point.3\Point
coordinates.1\Z` - max
(Open_body.1\Point.2.coord(3)
,Open_body.1\Point.1.coord(3)) <= 0mm

4. Click OK in the opening dialog box, click Run optimization.

5. Select and output file and click Save.

6. Click OK once the optimization process is over.

7. From the Start->Knowledgeware menu, access the Knowledge Advisor workbench

and click the Macros with argument icon (). The Script Editor opens. Enter the

following data in the editor and click OK:

Argument optim

Script body optim.Run false

8. Click the Reaction icon (). The Reaction dialog box opens.

● In the Source type field,
select Owner.

● In the Available events
list, select
BeforeUpdate.

● In the Action field, select
Knowledgeware action.

9. Click the Edit action... button, paste the following script in the editor, and click OK

twice:

if (CableLength <= distance (Open_body.1\Point.1 ,Open_body.1\Point.2))
Message ("Incompatible inputs: cable length is less than distance between points!")
else
{
`VB Script.1` .Run(Relations\Optimizations.1\Optimization.1)
}

10. Double-click the root of the specification tree and select the Insert->UserFeature-

>UserFeature Creation... command. The UserFeature Definition window opens.

11. In the Name field, enter the name of the UDF: Cable1 in this scenario.

12. Select the Spline, Point3, Reaction.1, VB Script.1, Optimization.1, the 4 formulas, and

the parameters: they are displayed in the UserFeature definition window (see below.)

Note that the UDF becomes the owner of the reaction. This reaction will be fired
before the update of the UDF instance.

13. Click the Parameters tab, select CableLength, click the Published name check box

and click OK.

14. Save the file and close it.

15. Create a new .CATPart file, access the Generative Shape Design workbench, and create

3 points.

16. Select the Insert->Instantiate From Document... command. The File Selection

panel opens. Select the KwrEvent_BeforeUpdate.CATPart file you just saved and click

the Open button.

17. The Insert object dialog box opens. Select Point.1 and Point.2 in the geometry or in the

specification tree and click OK. The cable (UDF) is instantiated and the optimization is

launched before the update.

18. Repeat steps 14 and 15: select Point.2 and Point.3 when instantiating the UDF: the

cable lengths are optimized.

19. Double-click the CableLength=400mm parameter and change its value to 200mm.

This cable length is optimized once again just before the update.

To know more about the Reaction feature window, see Using the Reaction Feature Window.

 Creating a Reaction: ValueChange Event

This task explains how to use the ValueChange event associated to the reaction feature.
The CATPart file contains a cable going through 3 points. The user wants the cable length to be
optimized each time he modifies the cable length.
The scenario is divided into 3 parts:

● the user creates an optimization

● the user creates a reaction

● the user modifies the cable length value

The Reaction capabilities require the Knowledge Advisor product.

1. Open the KwrEventValueChange.CATPart file: It contains 3 points and a spline (called

cable in this scenario).

2. From the Start->Knowledgeware menu, access the Product Engineering Optimizer

workbench and click the Optimize icon (). The Optimization window opens.

3. Enter the following data in the Optimization window:

file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrEventValueChange.CATPart

Problem
tab

Optimization
type

Minimization

Optimized
parameter

distance

Free
parameters

Open_body.1\Point.3\Pointcoordinates.1\Z

Algorithm Simulated Annealing-Convergence speed

Termination
criteria Maximum number of updates: 100

Consecutive updates without improvements: 20

Maximum time (minutes): 5

Constraints
tab

New
constraint

`Open_body.1\Point.3\Point
coordinates.1\Z` - max
(Open_body.1\Point.2.coord(3)
,Open_body.1\Point.1.coord(3)) <= 0mm

4. Click OK in the opening dialog box, click Run optimization.

5. Select an output file and click Save.

6. Click OK once the optimization process is over.

7. From the Start->Knowledgeware menu, access the Knowledge Advisor workbench

and click the Reaction icon (). The Reaction dialog box opens.

● In the Source type
field, select Selection
and select the
CableLength parameter
in the specification tree
for the Reaction to be
applied to the
CableLength
parameter.

● In the Available
events list, select
ValueChange.

● In the Action field,
select VB action.

8. Click the Edit action... button, paste the following script in the editor, and click OK

twice:

Dim partDocument1 As Document
Set partDocument1 = CATIA.ActiveDocument
Dim part1 As Part
Set part1 = partDocument1.Part
Dim relations1 As Relations
Set relations1 = part1.Relations
Dim optimizations1 As Optimizations
Set optimizations1 = relations1.Optimizations
Dim anyObject1 As Optimization
Set anyObject1 = optimizations1.Item("Optimization.1")

anyObject1.Run False

The reaction is added to the specification tree.

9. Double-click twice the CableLength=400mm parameter and change its value to

600mm: The optimization is launched (the RealLength and the distance parameters

have changed) and the geometry is changed accordingly.

To know more about the Reaction feature window, see Using the Reaction Feature Window.

[

 Using a Reaction with a User Feature:
Instantiation Event

This task explains how to use a reaction in a User Defined Feature.
The scenario described below is divided into two major steps:

● In the first step, you first create a formula that returns the length of the line, you create a
reaction that will add items of length type to a list when the document is instantiated and
then you create a UDF containing the line, the reaction and the formula.

● In the second step, you open a second document, you create a rule based on a list that will
display the total length, and then you instantiate the UDF that you previously created in this
document.

A basic understanding of the Part Design workbench and of Product Knowledge Template is
required to carry out this scenario.

1. Open the KwrUDFandReaction.CATPart file.

2. Create a parameter of Length type and assign it a formula. To do so, proceed as

follows:

● Click the icon, select Length in the New Parameter of Type scrolling list,
click the New Parameter of type button, and click the Add Formula button.

● In the Dictionary, click Measures, and double-click length (Curve, …):
Length.

● Position the cursor between the parentheses and double-click Line.1 in the
specification tree. Click OK, Yes, and OK.
(Length.1=length(Open_body.1\Line.1)).

file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrUDFandReaction.CATPart

3. Access the Knowledge

Advisor workbench,

click the List icon ()

to create a list, and

click OK. An empty list

appears under the

Parameters node.

(Click the graphic opposite to
enlarge it.)

4. Click the Reaction () icon. The Reaction editor opens:

❍ In the Source type list, select Owner.

❍ In the Available events, select Instantiation.

❍ In the Action area, select Knowledgeware action and click the Edit

action... button. The Action editor opens.

❍ Click the list in the specification tree and, in the Dictionary pane select

List, and in the Member pane, double-click List.AddItem.

file:///E|/www/meidocr12/Doc/online/kwrug_C2/images/kwrReactionandUDFLargeNLS.gif

❍ Position the cursor between the parentheses and enter Length.1 before

the comma, and 0 after the coma. Click OK twice. The Reaction feature is

created.

5. Access the Part Design workbench and select the Insert->UserFeature-

>UserFeature creation … command. The Userfeature Definition window opens: in the

Definition tab, enter the name of the User Feature (UserFeature1 in this scenario) and

select the Line, the Reaction, and the Length parameter in the specification tree. Click

OK.

The UserFeature1 is created and displayed under the Knowledge Templates node.

6. Save your file, close it, and open the KwrUDFandReaction2.CATPart file This is the file

into which you will instantiate the UDF you previously created.

7. Access the Knowledge Advisor workbench, and click the list icon () to create an

empty list and click OK.

8. Create a parameter of Length type (called Length.1 in this scenario) and apply a

formula to it. To do so, proceed as follows:

❍ Click the icon, select Length in the scrolling list, click the New

Parameter of type button, and click the Add Formula button.

❍ Select the list in the specification tree, in the Dictionary pane select List,

and in the Member pane, double-click List.sum. Click OK three times.

9. Click the Rule icon (), click OK, enter the following script in the Rule Editor, and

click OK:

Message("Total Length : #",Length.1
)

The total length is displayed: 0mm.

10. Access the Part Design workbench and select the Insert->Instantiate from

file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrUDFandReaction2.CATPart

Document … command.

11. Select the file you created (from step 1 to step 5, KwrUDFandReaction.CATPart in this

scenario) and click Open. The Insert Object window opens:

● Select Point.1 in the specification tree or in the geometry.

● Select Point.2 in the specification tree or in the geometry.

● Select List.1 in the specification tree and click OK.

The rule is fired and the
Total Length is
displayed.

 Using a Knowledge Advisor Reaction with a
Document Template: Instantiation Event

This task explains how to use the Instantiation event associated to the reaction feature.
The user wants to instantiate a document template containing a keypad into a .CATProduct file
already containing a mobile phone support.

The Reaction capabilities require the Knowledge Advisor product.

1. Open the KwrInstantiationEvent.CATPart file. The following image displays.

2. From the Start->Knowledgeware menu, access the Knowledge Advisor workbench

and click the Reaction icon (). The Reaction dialog box opens.

file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrInstantiationEvent.CATPart

● In the Source type field, select
Selection and select Document
Template.1 below the Knowledge
Templates node.

● In the Available events list, select
Instantiation.

● In the Action field, select
Knowledgeware action and enter
the following message:
Message("Keypad instantiated").
Click OK when done. The Reaction
feature is added to the Relations
node.

3. Click OK when done. The reaction is added to the specification tree.

4. Save your file and close it.

5. Open the KwrInstantiationEvent.CATProduct file.

6. From the Start->Knowledgeware menu, access the Product Knowledge Template

workbench.

7. From the Insert menu, select the Instantiate From Document... command.

8. In the File Selection dialog box, select the KwrInstantiationEvent.CATPart file that you

have just saved and click Open. The Insert Object dialog box displays.

9. In the Insert Object dialog box, click the Use identical name button.

10. Make the appropriate selection in the Replace Viewer window and click Close when

done. Click OK in the Insert Object dialog box. The document template is instantiated

and the reaction is launched.

file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrInstantiationEvent.CATProduct

To know more about the Reaction feature window, see Using the Reaction Feature Window.

 Creating a Reaction: Update Event

This task explains how to use the Update event associated to the reaction feature.
The CATPart file contains a rulebase that is updated each time a modification is made.

The Reaction capabilities require the Knowledge Advisor product.

1. Open the KwrEvent_Update.CATPart: It contains a part with holes and a rulebase made

up of 2 checks.

2. From the Start->Knowledgeware menu, access the Knowledge Advisor workbench

and click the Reaction icon (). The Reaction dialog box opens.

● In the Source type field, select
Selection and select the RuleBase
in the specification tree for the
Reaction to be applied to the
rulebase.

file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrEvent_Update.CATPart

● In the Available events list, select
Update.

● In the Action field, select
Knowledgeware action and enter
the following message:
Message("Rulebase updated").

3. Double-click the CATKWECheck.1. The Check Editor opens. Modify the check:

(H\Diameter == 20mm) and click OK

4. Right-click the rulebase and select the Rulebase object->Manual Complete Solve

command. The reaction is fired and the following message displays:

To know more about the Reaction feature window, see Using the Reaction Feature Window.

 Creating a Reaction: File Content Modification
Event

This task explains how to use the FileContentModification event associated to the reaction
feature. This event launches a reaction each time the file associated to the design table is
modified.

The Reaction capabilities require the Knowledge Advisor product.

1. Open the KwrBallBearing1.CATPart file. The following picture displays.

2. Click the Design Table icon (). The Creation of a Design Table dialog box displays.

3. Click the Create a design table from a pre-existing file option and click OK. The File

Selection dialog box opens.

4. Select the KwrBearingDesignTable.xls file and click Open. Click Yes when asked if you

want to associate the columns of the tables with the parameters.

5. Click OK to apply the default configuration.

6. From the Start->Knowledgeware menu, access the Knowledge Advisor workbench

file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrBallBearing1.CATPart
file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrBearingDesignTable.xls

and click the Reaction icon (). The Reaction dialog box opens.

● In the Source type field, select
Selection and select the
DesignTable.1 in the specification
tree for the Reaction to be applied to
the design table.

● In the Available events list, select
FileContentModification.

● In the Action field, select
Knowledgeware action and enter
the following message:
Message("The design table was
modified").
Click OK when done. The Reaction
feature is added to the Relations
node.

7. Double-click DesignTable.1 in the specification tree. The Design Table window displays.

8. Click the Edit table... button and change the material of row 2 to Gold. Save your file

and close it. The reaction is launched and the message displays.

 To know more about the Reaction feature window, see Using the Reaction Feature Window.

 Working with the Loop Feature

1. To know more about the loop concept, see Introducing the Loop Feature.

2. Prior to creating the loop, you should be familiar with the Loop Edition window. To know more, see
Getting Familiar with the Loop Edition Window.

3. Prior to starting creating a loop, you should know about the different steps of a loop creation and
about the action script. To know more about the different steps, see Creating a Loop: Roadmap. To
know more about the action script, see Using the Scripting Language. To get a full description of the
types used in action scripts, see the Reference section of this manual.

4. To get an example, see Creating a Loop or Creating a PowerCopy containing a Loop.

5. To get more information about the loop feature, see the Loop Feature: Useful Tips topic.

[

 Introducing the Loop Feature

 Loops use the Generative Knowledge language to drive the creation, modification and deletion of a set
of features. This functionality enables the user to:

● Select inputs in the definition of the loop

● Define several contexts in the loop action

● Include the loop into a powercopy

It can be accessed by clicking the Loop icon ().

● A loop is stored in the resulting model as a feature on its own. A change in its
specification will drive the expected modification in the model.

● A loop can be instantiated through a PowerCopy implying a significant
simplification of use and re-use.

[

Getting Familiar with the Loop Edition Window
and Menus

● The Loop Edition Window

● The Loop Tools Menu

● The Loop Contextual Menu

The Loop Edition Window

The Loop Edition window is displayed when you click the Loop icon () in the Control Features tool bar.

Input(s)

This field enables the user to select the
features that he wants to use in the
specification tree or in the geometry.
The selected features are those that will
be used in the loop body.

To deselect items from the Inputs
list, click them in the specification
tree or in the geometry.

The Input Name field enables the user
to rename the inputs that he selected.
In this case, this name will be used in
the loop body.

Context

This field enables the user to define the application context of the loop. It can be any V5 feature. To select the
context, click the Context field once, then click the item in the specification tree.

Iterators

The From ... To fields enable the user to define the number of times that the loop will operate. When defining
the ranges, the user can right-click the From... and the To fields to access the contextual menu.

● The Edit formula... command enables the user to access the Formulas
editor and to create a formula that will apply to the loop operation. To
know more, see Creating a Formula.

● The Add Multiple Values... command enables the user to add
multiples value. To know more, see Switching between Simple and
Multiple Values After Creating a Parameter.

● The Add Range... command enables the user to add a range.

● The Edit Comment... command enables the user to add a comment.

● The Lock... command enables the user to lock this parameter. To
know more, see Locking and Unlocking a Parameter .

Note that:
● The step is one in the From... To fields.

● Both bounds are included when the loop runs.

Editor

The Editor enables the user to enter the loop syntax. The language to use in this editor is the scripting
language. To know more about the syntax to be used, see Using the Scripting Language.

The Tools menu

The Tools->Object Browser ... command enables the user to access the Object Browser. This browser
contains the types and attributes that are part of the scripting syntax.

The object browser guides you when writing a script. It allows you to access the keywords, operators and
feature attributes that can be used when working with the loop features.

The packages displayed in the left part of the browser are those you selected from the Tools->Options...
command.

To add or remove packages, proceed as follows:

file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugat3002.htm#Switching between Simple and Multiple Values After Creating a Parameter
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugat3002.htm#Switching between Simple and Multiple Values After Creating a Parameter
file:///E|/www/meidocr12/Doc/online/cfyugkwr_C2/cfyugparameters0013.htm

1. Select the Tools->Options... command to open the Options window, then select General-
>Parameters and Measure, and click the Language tab.

2. In the Language field of the Knowledge tab, check Load extended language libraries and select
the libraries.

From this window, you can manipulate
the list of objects supported by the
script using their attributes...

● The left part of the browser
displays the available packages.

● The central part displays the list of
objects belonging to this
category.

● The right part displays the

attributes allowing you to

manipulate these objects (if any).

... and write loop bodies (see example
below):

Circle0 isa GSMCircle
 {
 CircleType = 0;
 TypeObject isa
GSMCircleCtrRad
 {
 Center = object:

..\..\..\Construction_Body\Point.2;
 Support = object:

..\..\..\Construction_Body\Extrude.1;
 Radius = 180mm;
 }
 StartAngle = -100deg;
 EndAngle = 100deg;
 }

The Back icon.
To return to your last interaction in the wizard. Has no action on the script editor.

The Forward icon.
To go forward to your next interaction in the wizard when moving through a series of interactions.

The Attribute Type icon.
This icon is not available in the current version of the product.

The Inheritance icon.
To return to the root object.

The Insert icon.
To insert the object name in the script.

The Loop Contextual menu

You can access the Loop contextual menu by right-clicking the loop in the specification tree.

● The Definition... command enables you to access
the Loop Edition window.

● The Deactivate... command enables you to
deactivate the loop. In this case an icon indicates
that the loop is disabled. To enable it, right-click it
and select the Loop activate... command.

● The Hide command enables you to hide the loop.
In this case, it will not display in the specification
tree.

● The Reorder... command enables you to reorder
the loops.

[

Creating a Loop: Roadmap
Please find below the topics that will help you create a loop.

1 Declaring Input Data

2 Defining the Context

3 Specifying the iterators

4 Writing the Body of the Action script

[

Declaring Input Data
The Input Data are the data that will be used in the body of the loop and potentially be changed when
instantiating the loop. To select them, click them in the specification tree or in the geometry.

The Input Name field
enables you to change the
name of the input.

[]

Defining the Context
To create a loop, the user needs to define the context, that is to say the object (PartBody, OpenBody, Pad,
Relations, Parameters node or any feature) that will contain the items created by the loop. There are 3 different
ways to define the context.

Using the Context field

To define the context of the loop, you may use the Context field of the Loop edition
window.
To do so, click the Context field, and select an object in the specification tree. In the
picture opposite, the user selected a pad in the specification tree.

Using an existing Document

It is possible to use an existing .CATPart or .CATProduct document.

Using the context keyword

When creating elements that need to be located in different bodies, the user can change the context he defined
in the Context field and use the Context keyword to define new contexts in the loop body.

The action script should not start with the context keyword since the first context is defined in the
Context field.

Sample: KwrLoopMulticontext.CATPart (to launch the loop, activate the loop.)

file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrLoopMulticontext.CATPart

 Using the Scripting Language

Introducing the Scripting Language

The Scripting Language is a declarative way of generating V5 Features. It allows users to:

● Describe objects using a very simple script language.

● Use 3D geometric features (sketches, parts, ...).

● Use parameters on features including formulas.

● Use related positioning & orientation constraints.

● Generate the corresponding V5 models (features, documents, User Features,...)

● Enter the body of their loops in the Loop Edition window in Knowledge Advisor.

Action Script Structure
Object Properties

Operators
Keywords
Variables

Comments
Limitations

Using the Get... Commands

[

Action Script Structure

An action script is written in text format and is organized in blocks consisting of related sets of statements.
A block consists in an instruction designed to create an object followed by a set of statements surrounded by
braces ({ }). Statement blocks can be nested and the most enclosing one within a script corresponds to the
document creation.

A document is made up of a hierarchy containing objects, their properties and the features they own. An action
script reflects this object hierarchy.

Example

In the script opposite, the inputs and the
published parameters (2) of the
instantiated UDF "Hole_UDF" (1) are
nested between braces {}.

[

 Object Properties
● An object is created by default with some property values. These properties are defined or re-defined within

the braces just following the object declaration (isa keyword).

● Unless otherwise specified, the units are IS units.

● When defining properties, the semicolon ; is a terminator (see example below). The properties might be
object attributes (1), attributes needed to define a type displayed in the Object browser (2) or aggregated
objects (3).

 1 2

3

In the script above, the properties are
the inputs of an instantiated UDF.

In the script above, the properties
are the attributes required to
create a point to point line.

In the script above, the Pad object
is aggregated below the
OpenBodyFeature object.

[

 Keywords

● isa keyword

● context keyword

● from keyword

● import Keyword

● publish keyword

isa Keyword

Definition

Enables the user to create a typed object or instantiate an object.

Syntax

● ObjectName isa ObjectType

or

● ObjectName isa InstanceName

where:

● ObjectName is the name of the object to be created.

● ObjectType is the type of the object to be created.

● InstanceName is the name of the object to be instantiated.

Example

import "E:\GPS.CATPart";
myGps isa CATPart
 {
 myPart isa Part
 {
 PartB isa BodyFeature
 {
 S0 isa Sketch.0 {} //Instance name
 pad0 isa Pad("S0") //Object type
 }
 }
 }

context Keyword

Definition

Enables the user to define in which part of the specification tree the object will be created. The context keyword
may be of use in 2 different cases:

● It can indicate a
document to be used. In
this case, the "..." are
used.

context "Mypart.CATPart"
MyPart isa Part { }

● It can reference an object
contained in the
document. In this case
the path needs to be
specified (between `...`).

context `My.CATPart\MyPart\PartBody`
CC isa Cylinder { }

Syntax

● context "Mypart.CATPart"

or

● context `My.CATPart\MyPart\PartBody`

from Keyword

Definition

Allows the user to copy a document from an existing document without maintaining any link.

Syntax

DocumentName isa DocumentType from FilePath

where:

DocumentType is either CATProduct, CATPart or model.
FilePath is the full path of the initial document.

To enter a file path you can:

Use the Insert File Path command from the contextual menu

 Example

See Defining the Context

import Keyword

Definition

Specifies a document file (.CATPart or .CATProduct) containing definitions to be reused or redefined in the
document to be generated. All the features and feature values in the imported file become available to the
document to be generated.

Importing a document is:

● Of interest whenever you want to retrieve a consistent set of definitions from an already existing document
(for a UDF definition for example.)

● Required whenever you need to create a feature from a sketch (the script language does not allow you to
specify a sketch).

Syntax

import FileName ;

where FileName is the name of the file which contains the document to be imported.
You should enclose the document name within quotation marks and end the import statement with a semicolon
(;). You can also use the ~ symbol to specify a relative path.

To specify a file to be imported, you can:
● Use the 'Insert File Path' command from the contextual menu. Selecting this command displays a

file selection panel. Quotation marks are automatically included but not the semicolon or

Example

publish Keyword

Definition

 Enables the user to assign an object a name that will be used in the script.

Syntax

publish "!xxx" as yyy ;

Where:

● xxx is the name of the object to be published. To select this object, it is highly recommended to use the
contextual menu.

● yyy is the name you want to assign to this object

Example

Publi isa CATProduct
{
 Publi isa Product
 {
 P isa Product
 {
 P1 isa Part
 {
 PartBody isa Feature
 {
 Pa isa Pad{}
 }
 }
 publish "Publi/P/!Selection_RSur:(Face:(Brp:(Pa;2);None:());Pa)" as mypadface; /*publishes
 the face of a pad under the name "mypadface"*/
 }
 Q isa Product
 {

 Q1 isa Part
 {
 PartBody isa Feature
 {
 Cy isa Cylinder{}
 }
 }
 publish "Publi/Q/!Selection_RSur:(Face:(Brp:(Cy;2);None:());Cy)" as mycylinderface;
 //publishes the face of a cylinder under the name "mycylinderface"
 }
 assembly constraints: contact("P\toto","Q\tutu");
 }
}

[

 Variables
Variables are declared explicitly in your script. These variables are displayed as parameters in the specification
tree.

ALPHA = 45 deg;

Unlike in most script languages, a variable scope is not really determined by where you declare it. From
anywhere in your action script, you can access a variable by using the ..\.. and ? operators. After the script is
finished running, the variable declared in your script still exists as a document parameter.

 Operators

Arithmetic operators

+ Addition operator (also concatenates strings)

- Subtraction operator

* Multiplication operator

/ Division operator

 () Parentheses (used to group operands in expressions)

= Assignment operator

? (Question Mark in Formulas)

Definition

In a formula, specifies that the parameter value to be applied is the first parameter value found when scanning
the specification tree from the formula to the top of the specification tree.

Sample

KwrLoopRelativePath.CATPart

(Relative Path in Formulas)

Definition

Defines where the value of a parameter used as an argument in a formula is to be read. A single.. exits the
statement block where the formula is defined. The parameter value applied in the formula is then the one
defined in the parent feature scope.

Sample

KwrLoopRelativePath.CATPart

file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrLoopRelativePath.CATPart
file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrLoopRelativePath.CATPart

 Using The Get... Commands
The commands described in this section are the ones the user can access when using the Loop Editor and right-
clicking in the Editor window.

When creating a loop containing the path of a feature contained in the specification tree, it is highly
recommended to use the Get Feature command to retrieve the internal name of this feature.

● Using the Get Axis Command

● Using the Get Edge Command

● Using the Get Surface Command

● Using the Get Feature Command

● Using the Insert File Path Command

The 'Get Axis' Command

This task explains how to create a chamfer by using the Get Axis command. This command
enables the user to interactively capture the generic name of an axis and to insert it into the
script instead of keying it in.

1. Click the Loop icon () and enter 1 in the To field.

2. In the Script Editor, enter the following script and click OK. A pad is created.

myChamferDocument isa CATPart
{
 myPart isa Part
 {
 PartBody isa BodyFeature
 {
 P isa Pad
 {
 }

 }
 }
}

3. From the Window menu, select Cascade.

4. Under the P isa Pad block, add F isa Chamfer, right-click to open the contextual menu

and select the Get Axis command, and select an edge in your geometrical surface. The

script should be as follows:

myChamferDocument isa CATPart
{
 myPart isa Part
 {
 PartBody isa BodyFeature
 {
 P isa Pad
 {
 }
 F isa Chamfer("Edge:(Face:(Brp:(P;0:(Brp:(Sketch.1;2)));
 None:());Face:(Brp:(P;0:(Brp:(Sketch.1;3)));None:());
 None:(Limits1:();Limits2:()))"){}
 }
 }

}

5. Click the OK button. The chamfer is created.

The "Get Edge" Command

This task explains how to create a chamfer by using the Get Edge command. This command
enables the user to interactively capture the generic name of an edge and to insert it into the
script instead of keying it in.

1. Click the Loop icon () and enter 1 in the To field.

2. In the Script Editor, enter the following script and click OK. A pad is created.

myChamferDocument isa CATPart
{
 myPart isa Part
 {
 PartBody isa BodyFeature
 {
 P isa Pad
 {
 }

 }
 }
}

3. Under the P isa Pad block, add F isa Chamfer, right-click to open the contextual menu

and select the Get Edge command, and select an edge in your geometrical surface. The

script should be as follows:

myChamferDocument isa CATPart
{
 myPart isa Part
 {
 PartBody isa BodyFeature
 {
 P isa Pad
 { }
 F isa Chamfer("Edge:(Face:(Brp:(P;0:(Brp:(Sketch.1;2)));

None:());Face:(Brp:(P;2);None:());None:(Limits1:();Limits2:()))"){}
 }
 }
}

4. Click the Generate button. The chamfer is created.

The "Get Surface" Command

This task explains how to create a sketch on an existing face by using The Get Surface
command. This command enables the user to interactively capture the generic name of a
surface and to insert it into the script instead of keying it in.

1. Open the KwrGetSurface.CATPart file.

2. Access the Knowledge Advisor workbench, and click the Loop icon. Enter 1 in the To

field

3. Enter the following script:

import "f:\cube.CATPart";
myFaceDocument isa CATPart
{
 myPart isa Part
 {
 PartBody isa BodyFeature
 {
 P isa Pad{}
 S isa Sketch.1()

4. Position the cursor between the two parentheses of the last line of the above script,

right-click to open the contextual menu and select the Get Surface command.

5. Select the face whose name you want to capture. The full name is inserted at the cursor

location. Enter the end of your script. In our example, the final script is as follows:

file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrGetSurface.CATPart

import "f:\PktGetSurface.CATPart";
myFaceDocument isa CATPart
{
 myPart isa Part
 {
 PartBody isa BodyFeature
 {
 P isa Pad{}
 S isa Sketch.1("Face:(Brp:(P;0:(Brp:(Sketch.1;2)));None:())")
 {
 }
 }
 }
}

The "Get Feature" Command

This task explains how to use the Get Feature command. This command enables the user to
interactively capture the generic name of a surface and to insert it into the script instead of
keying it in. In the task below, the user generates a line.

1. Open the KwrGetFeature.CATPart file.

2. Double-click the loop located below the Relations node and insert the following code into

the editor:

Line_Pt_Pt isa GSMLine
{
LineType = 0;
TypeObject isa GSMLinePtPt
{
FirstPoint = object: // Using GetFeature to Select the FirstPoint
SecondPoint = object: // Using GetFeature to Select the SecondPoint
}
}

3. Position the cursor after FirstPoint = object: and select the Get Feature command in

the contextual menu.

4. Click a point in the geometry and add a semi-colon (;) at the end of the line.

5. Position the cursor after SecondPoint = object: and select the Get Feature command in

the contextual menu.

file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrGetFeature.CATPart

6. Click another point in the geometry and add a semi-colon (;) at the end of the line. Your

script should now look like the one below:

7. Click OK. A new line is generated.

The 'Insert File Path' Command

This task explains how to use the Insert File Path command. This command is one of the
methods you can use to specify a path in a script.

When writing a script, you have to specify a file path in two cases:

● when you import a file, see the import keyword.

1. Access the Script Editor and enter any instruction requiring a file path specification

(import in the example below).

2. Position the cursor where the path is to be specified.

3. Right-click and select the Insert File Path command from the contextual menu.

4. In the dialog box which is displayed, select the appropriate file. Click Open to go back

to the script editor.

The full path is inserted at the cursor place. Check that the statement is ended by a

semi-colon.

[

 Comments
Multi-line comments (/* ... */) are supported. A single-line comment begins with a pair of forward slashes(//).

Note that DBCS characters are not supported as comment.

Example
Sphere1 isa Sphere // Creates a sphere
 {
 // Valuates the Radius property
 Radius = 15.0 ;
 }

[

 Limitations

You should be aware of some restrictions:

● Instances of sketch-based features cannot be moved apart from their prototype.

● Any parameter used as an argument in a formula should be preceded by the ? symbol. The syntax X = 2 *
Y is invalid and should be replaced with X = 2 * ? Y.

● Unless a formula-defined parameter has not been initialized with the proper units, the value calculated
from the formula is dimensionless.
 Y = 0 kg ;
 Y = 2 * ? X ;

● A script error stops the reading and the execution of the loop.

[

 Creating a Loop

The task below illustrates how to interactively apply a loop to an existing document.

The KwrLoop1.CATPart is made up
of a surface (2) and a solid (1) that
symbolizes a hole. This hole is
inserted into a User Feature (UDF)
for a later instantiation. The User
Feature (UDF) has 3 different inputs
(a point, an axis and a surface). 2
parameters of the User Feature
(UDF) are published (3).

● Clearance=4mm

● Diameter=8mm

The KwrLoop2.CATPart is made up
of a surface (1) and of 14 points (2)
inserted into a list. The Line.7 is the
instantiation axis (1).

The aim of this scenario is to instantiate as many holes as existing points. It is divided into the
following steps:

file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrLoop1.CATPart
file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrLoop2.CATPart

● The user creates a loop.

● The user instantiates the User Feature (UDF) from the existing .CATPart file.

● The user valuates the required inputs to instantiate the holes.

To create a loop, you have to:

1. Declare input data

2. Define the context

3. Specify iterators

4. Write the body of the action script

Before creating a loop in a CATPart document, make sure that the Manual input option is
unchecked in the Part Number field of the Tools->Options...->Infrastructure->Product
Structure->Product Structure tab.

To carry out this scenario, you will need the following files:
● KwrLoop1.CATPart

● KwrLoop2.CATPart

1. Open the KwrLoop2.CATPart

Creating a Loop

2. From the Start->Knowledgeware menu, access the Knowledge Advisor workbench.

3. Click the Loop icon () in the Control Features bar. The Loop Edition window displays.

4. In the specification tree, select the inputs of the loop.

❍ Expand the Parameters node and select the List_Extract list. In the Input

name field, enter the name of the list: PointsList.

❍ Expand the Surface node and select the Revolute.1 feature. In the Input name

field, enter the name of the list: SurfRef.

file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrLoop1.CATPart
file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrLoop2.CATPart
file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrLoop2.CATPart

❍ Expand the Result_Body node and select the Line.9 feature. In the Input

name field, enter the name of the list: LineAxis.

Note that the name indicated in the Input name field is the one that will be

used in the loop body.

5. Select the context, that is to say, in this scenario, the feature that will contain the instantiated

holes.

❍
Click the Context field.

❍
Click Result_PartBody in the specification tree.

6. Indicate the number of holes that you want to instantiate into the surface.

❍
In the From field, indicate 1. (1 corresponds to Extract.1.)

❍
Right-click the To... field and select the Edit formula... command. The

Formula Editor displays.

❍
In the specification tree, click ListSize=12. Click OK when done. The number

of instantiated holes is now valuated by a formula based on the list, that is to

say on the number of points contained in the list.

7. Enter the following action script into the Editor.

❍ Use the import

keyword to indicate

the path of the file

containing the User

Feature (UDF) to be

instantiated. To

indicate the path of

the file, it is

recommended to use

the Insert File Path

command available in

the contextual menu

to import

KwrLoop1.CATPart.

(1)

❍ UDF_i is the name

that will be attributed

to each instance of the

hole. At each iteration,

i is replaced with the

current iterator. (2)

❍ Clearance_Hole_UDF is

the name assigned to

the User Feature (UDF)

in the

KwrLoop1.CATPart file.

(2)

❍ Position is a point and is also the first input that needs to be valuated when

instantiating the holes. PointsList is the name of the List. (3)

❍ Clearance_Surface is the second input required and defined when creating the User

Feature (UDF) and SurfRef is the revolute into which the holes will be instantiated.

(3)

❍ Axis is the third input required and defined when creating the User Feature (UDF)

and LineAxis is Line.9, that is to say the instantiation axis. (3)

To know more about the syntax to be used (;, {}, i) in the loop body, see Using the

Scripting Language.

8. Click OK when done. The 12 holes are instantiated. (See picture below.)

[

Creating a PowerCopy containing a Loop

This task illustrates how to interactively apply a loop to an existing document. In this scenario, the
user wants to make holes in a pad. To do so, he:

● Creates a loop referencing the inputs of an existing User Feature (UDF) used to make holes in a
pad.

● Saves the loop in a powercopy.

● Instantiates the powercopy into an existing document and creates the holes.

To carry out the scenario, the user will need the following files:

The KwrLoop1.CATPart is made up of
a surface (2) and a solid (1) that
symbolizes a hole. This hole is
inserted into a User Feature (UDF)
named Clearance_Hole_UDF for a
later instantiation. The User Feature
(UDF) has 3 different inputs (a point,
an axis and a surface). 2 parameters
of the User Feature (UDF) are
published (3):

● Clearance=4mm

● Diameter=8mm

The KwrLoop3.CATPart file is made up
of a pad and a surface and of 24
points (1) inserted into a list. Line.2 is
the instantiation axis (2). This
.CATPart file is the one that will
contain the loop contained in the
powercopy that will be instantiated
into KwrLoop4.CATPart.

file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrLoop1.CATPart
file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrLoop2.CATPart

The KwrLoop4.CATPart is made up of
a pad and a surface (3) and of 17
points (2) inserted into a list. Line.1 is
the instantiation axis (1). It will
contain the instantiated loop and the
holes.

Before creating a loop in a CATPart document, make sure that the Manual input option is
unchecked in the Part Number field of the Tools->Options...->Infrastructure->Product
Structure->Product Structure tab.

Creating the loop referencing the user feature (UDF)

1. Open the KwrLoop3.CATPart. The following image displays.

2. From the Start->Knowledgeware menu, access the Knowledge Advisor workbench.

file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrLoop4.CATPart
file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrLoop3.CATPart

3. Click the Loop icon () in the Control Features bar. The Loop Edition window displays.

4. In the specification tree, select the inputs of the loop.

❍ Expand the Parameters node and click the Lists_PointRef list. In the Input

Name field, enter the name of the list: PointsList.

❍ Expand the Open_body.1 node and select the Clearance_Surface feature. In the

Input name field, enter the name of the feature: SurfRef.

❍ Expand the Holes_Points node and select the Line.2 feature. In the Input name

field, enter the name of the line: LineAxis.

Note that the name indicated in the Input name field is the one that will be

used in the loop body.

5. Select the context, that is to say, in this scenario, the feature that will contain the instantiated

holes.

❍ Click the Context field.

❍ Click ResultBody in the specification tree.

6. Indicate the number of holes that you want to instantiate into the surface.

❍ In the From field, indicate 1. (1 corresponds to Extract.1.)

❍ Right-click the To... field and select the Edit formula... command. The Formula

Editor displays.

❍ In the specification tree, click ListSize=24. Click OK when done. The number of

instantiated holes is now valuated by a formula based on the list, that is to say

on the number of points contained in the list.

7. Enter the following action script into the Editor.

❍ Use the import

keyword to indicate the

path of the file

containing the User

Feature (UDF) to be

instantiated

(KwrLoop1.CATPart).

❍ To indicate the path of

the file, it is

recommended to use

the Insert File Path

command available in

the contextual menu to

import

KwrLoop1.CATPart. (1)

❍ UDF_i is the name

that will be attributed

to each instance of the

hole. (2)

file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrLoop1.CATPart

❍ Clearance_Hole_UDF is

the name assigned to

the User Feature (UDF)

in the

KwrLoop1.CATPart file.

(2)

❍ Position is a point and also the first input that needs to be valuated when instantiating

the holes. PointsList[i] is the name of the List. [i] corresponds to the nth item of

the list. In this case, nth is equal to 24, the number of holes to be instantiated (3).

❍ Clearance_Surface is the second input required and defined when creating the User

Feature (UDF) and SurfRef is the revolute into which the holes will be instantiated. (4)

❍ Axis is the third input required and defined when creating the User Feature (UDF) and

LineAxis is Line.9, that is to say the instantiation axis. (5)

❍ Clearance is one of the published parameters of the User Feature (UDF). It is used in

the action script because the user wants the value of the published parameter to be

modified. (6)

To know more about the syntax to be used (;, {}, i) in the loop body, see Using the

Scripting Language.

8. Click OK when done. The holes are instantiated (see graphic below.)

9. Click the Update icon () to update the document.

10. Right-click the loop and use the Properties command to rename the loop into Loop_Holes.

Click OK when done.

11. In the specification tree, right-click the loop (located below the Relations node) and select the

Loop_Holes object->Deactivate command.

Saving the loop in a powercopy

12. Click the root of the specification tree, and from the Start->Mechanical Design menu,

access the Part Design workbench.

13. From the Insert->Advanced Replication Tools menu, select the PowerCopy Creation...

command. The Powercopy Definition window displays.

14. In the specification tree, select the items making up the powercopy:

❍ Formula.1

❍ Loop_Holes

Note that the powercopy will need the following inputs at instantiation time:

❍ ListSize

❍ Line.2

❍ Clearance_Surface

❍ List_PointsRef

❍ ResultBody

15. Click OK when done. The PowerCopy is created and displays below the PowerCopy node in the

specification tree.

16. Save your file and close it.

Instantiating the powercopy into an existing document

17. Open the KwrLoop4.CATPart file. The following image displays.

18. From the Insert menu, select the Instantiate From Document... command.

19. In the File Selection window, select the KwrLoop3.CATPart file that you have just saved and

click Open. The Insert Object dialog box displays.

file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrLoop4.CATPart

20. Valuate the inputs of the powercopy. To do

so, in the specification tree, click:

❍ ListSize=15 to valuate ListSize.

❍ Body.2 to valuate the

ResultBody.

❍ List_Of_Points to valuate the

List_PointsRef.

❍ Extrude.1 to valuate the

Clearance_Surface.

❍ Line.1 (located below

Open_body.1) to valuate

Line.2, that is to say the

instantiation axis.

21. Click OK when done. The Loop and the formula contained in the powercopy are instantiated.

22. To instantiate the holes, activate the loop. To do so, right-click Loop.1 in the specification tree

and select the Loop.1 object->Activate command. The holes are instantiated.

[

Loop Feature: Useful Tips

Generic Naming

Generic naming is a CATIA technique which creates a label whenever an element has been selected
interactively. This label is a coded description of the selected element. When you specify a fillet to be applied
to a face, you must select interactively the face definition but prior to doing this you must of course have
generated the face to be filleted. This is why scripts requiring face, point or edge definitions cannot be
generated in one shot. You don't have to mind about the generic naming itself as it is automatically captured
from the geometry area. The thing you have to mind about is the order your instructions are to be written
and executed in the script.

Message "property does not exist..."

Check in the browser that the attribute name is correct. For attributes of list type (Fillets and Chamfers),
check the indexes. The indexes specified must be consecutive from 1 to n without any gaps.

Specifying a File Path (3 methods)

Method 1: Use the Insert File Path command from the contextual menu.

To do this, position the cursor where the file path is to be specified, then right-click and select the Insert File
Path command from the contextual menu. In the dialog box which is displayed, select the appropriate path,
then click Open. This insert the full path between quotation marks into your script.

Method 2: Define your linked document strategy.

Use the Link Document Localization command of the CATIA Tools->Options... menu to define your linked
document strategy. Choosing an appropriate strategy allows you to specify only the short path of a document.
Example:
If the E:\www\samples folder is specified in the 'Search Order' of the 'Other Folders' Configuration, you can
write:
import "PktInitialSketch.CATPart" ;
instead of
import "E:\www\samples\PktInitialSketch.CATPart" ;

See to the CATIA Infrastructure User's Guide for how to use the Link Document Localization command.

 Importing Sketches: Recommendation

When designing a document to be generated by a script, it is better to group all the required sketches in a
single file. That way:

● you minimize the overall size of your sketch-related data

● no matter the method used to specify the input file, you just have to specify the path once

● the design of the final document is made easier. You get a global view of the sketches on which the other
features rely.

 Specifying Strings: Recommendation

Double quotation marks as well as single quotation marks of apostrophe type (`) can be used to delimit
strings. Single quotations marks (`) must be used to enclose character strings which contain other strings.

Using the Knowledge Advisor Action

This task explains how to use an action.

The scenario described below is made up of 3 major steps:

● You first create a pad containing an action.

● You store this action in a catalog

● You then import the action stored in the catalog into another CATPart product.

It is highly recommended to be familiar with the Part Design workbench to carry out this scenario.

1. Access the Part Design workbench and create a Pad or open the KwrAction.CATPart

file.

2. Create a parameter of volume type and assign it a formula. To do so, proceed as

follows:

 Click the icon, select Volume in the scrolling list, click the New Parameter
of type button and rename the Parameter (V in this scenario).

● Click the Add formula
button. The formula editor
opens.

● Under Dictionary, select
Part Measures, and double-
click smartVolume. Position
the cursor between the
parentheses and select
PartBody. Click OK, Yes
(when prompted for an
automatic update) and OK.

3. Access the Knowledge Advisor workbench and click the Action icon () to create

an action. The Action editor opens. Enter the following script and click OK:

file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrAction.CATPart

Inputs field B: Body

Editor B.Query("Pad","").Compute("+","Solid","smartVolume(x)",V)
Message("Total volume of the pads under this body : #",V)

● The action created above searches for the pads contained in the selected
body and computes the volume of these pads.

● To know more about Query and Compute, click here.

● To see the created .CATPart file, click here.

4. Save your file and store the created action in a catalog. To do so, proceed as

follows:

● From the Start menu, select Infrastructure->Catalog Editor. The catalog
editor opens.

● Click the Add Family icon (), or select the Insert -> Add Family...
commands from the main menu to display the Component Family Definition
dialog box. Indicate the name of the family (ComponentFamily.2 in this
scenario), and click OK.

● Double-click the ComponentFamily.2 family in the catalog structure and click

the Add component icon (), or select the Insert -> Add Component...
command to display the Description Definition dialog box.

● Click the Select external feature button. Go back to the geometry, select
the Action.1 feature in the specification tree and click OK. Save your catalog.
The action contained in your .CATPart file is now stored in the catalog you
have just created.

5. Open the KwrReceiveAction.CATPart file.

6. Click the Catalog icon

() to import the

action stored in the

catalog. Click the

Browse another

catalog icon),

select your catalog, and

click Open. Double-click

ComponentFamily.2, and

double-click Action.1.

file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrAction2.CATPart
file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrReceiveAction.CATPart

The Insert object dialog

box opens.

(Click the graphic opposite to
enlarge it.)

7. Select PartBody: the

imported action displays

the volume of the pads

contained in this body.

(Click the graphic opposite to
enlarge it.)

8. Select Body.2: the

imported action displays

the volume of the pads

contained in this body.

[

file:///E|/www/meidocr12/Doc/online/kwrug_C2/images/kwrAction2LargeNLS.gif
file:///E|/www/meidocr12/Doc/online/kwrug_C2/images/kwrAction3LargeNLS.gif

Use Cases
The Ball Bearing

The System of Three Equations in Three Variables

The Ball Bearing
A bearing is defined by parameters such as its principal dimensions, its basic load ratings, its limiting speeds
and its mass. It belongs to a category which corresponds a certain range of its parameter values. In a
catalogue, a bearing is referred to by a designation. Bearing types are described by tables which define the
bearing parameter values including the designation.

The bearing example has been chosen here because the bearing tables given in distributor and retailer
catalogues illustrate quite well the design table principles. The bearing itself is a good example of how
components within a mechanical part can be constrained by relations.

In the scenario below, you start from an existing document inspired by a deep groove ball bearing. This
document contains already a number knowledgeware relations, others are added to control the document
design.

Before you Start
Step-by-Step

[

Before you Start
Here is the data required to carry out the scenario. They are all delivered with the Knowledge Advisor product
but can be rebuilt from the information given below.

See the Infrastructure User's Guide for how to specify the material library settings (you must use the
Tools->Options...->Infrastructure->Material Library command from the standard menu bar).

The Initial Document

The initial document is the KwrBallBearing1.CATPart document.

The bearing rings are coaxial shafts created from the Sketch.1 and Sketch.2 features. The balls are shafts
created from the Sketch.3 feature.

The Outer Ring

The outer ring is a shaft generated by rotating the Sketch.1 highlighted in figure below around an axis coaxial to

file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrBallBearing1.CATPart

V. Note that you must create this axis as a construction element, otherwise CATIA won't let you create the
Shaft. The lower part of the sketch is the symmetry of the upper part with respect to the H axis.

Here are the constraints defined on this sketch:

d1 2.1 mm ring width

L1 3 mm half height of the non - hollowed inner surface

B1 5 mm half height of the outer surface

R1 2.759 mm groove radius

b1 0 mm ordinate of the groove center

D1 13 mm external diameter

The Inner Ring

The inner ring is a shaft generated by rotating the Sketch.2 highlighted in figure below around an axis coaxial to
V.

Here are the constraints defined on this sketch:

d2 2.1 mm ring width

L2 3 mm half height of the non - hollowed inner surface

B2 5 mm half height of the outer surface

R2 2.759 mm groove radius

b2 0 mm ordinate of the groove center

D2 7.1 mm internal diameter

The Balls

A ball is a shaft created by rotating half a circle (sketch.3) around the H axis. The circle must be closed before
being rotated.

The parameters of the circular pattern which is created to build the set of balls are constrained by the formulas
below:

● BallNumber = int(3* D3 / BallRadius)

● AngStep = 3.6deg / BallNumber

D3 being the abscissa of the ball center.

The Import File

In the scenario, you have to import the text file below which is delivered under the KwrBallBearingImport.txt
name.

Temperature 100Kdeg Maximum temperature allowed
Pressure 190N_m2 Maximum pressure allowed
LubricantVolume 0mm3 L1*D3*B1*0.005 required lubricant volume

If you modify this file, pay attention to the column format, use the Tab key to skip from one column to the
other.

The Excel Table which Controls the Bearing Design

You must download the KwrBearingDesignTable.xls Excel table in your environment.

The CATScript Macro

file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrBallBearingImport.txt
file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrBearingDesignTable.xls

The KwrBearing.CATScript macro just creates a circular pad. You can record this macro on your own in the Part
Design workbench or use the one supplied with the KnowledgeAdvisor samples.

When creating Rule.2 in your own environment, you should replace the pathname given as the argument of the
LaunchMacroFromFile function with the pathname corresponding to the file where the macro has been
downloaded.

[

file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrBearing.CATScript

Step-by-Step Procedure

Controlling the Bearing Design with a Design Table

A design table is created from a pre-existing file. The data set contained in this pre-existing file is
quite similar to the data set which identifies a bearing in a catalogue. The design table which is
created defines a number of configurations. Applying a new configuration results in a bearing
modification.

1. Open the KwrBallBearing1.CATPart document.

2. Click the Design Table icon in the standard toolbar.

3. Check the Create a design table from a pre-existing file option. Click OK.

4. Select the KwrBearingDesignTable.xls file and associate automatically the design table

columns and the document parameters (i.e. click YES in the "Automatic Associations?"

dialog box).

5. In the Design table dialog box, select the configuration 3 (Line 3) and click Apply.

Your ball bearing has changed. It is now a bronze bearing with 21 balls. You can tell the

difference when you look at the geometry area. The bearing width is also modified. Click

OK to exit the Design Table dialog box.

6. Keep your document open and proceed to the next task.

Creating a Check

A combined check using the => syntax is created. This check is intended to display a message
whenever the check is not satisfied.

file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrBallBearing1.CATPart
file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrBearingDesignTable.xls

1. Access the Knowledge Advisor workbench

2. Click the icon then click OK in the first Check Editor dialog box. The check editor is

displayed.

3. In the Check Editor, select the Warning type and enter the string "BallNumber is too small"

in the message field.

Then enter the

D3 >= 6mm => BallNumber > 6

relation in the edition box.

4. Click OK to create your check and exit the editor. At this stage, no particular message is

displayed. The check is added to the specification tree with a green icon. For the

configuration 3 of the design table, this is the status of the check relations:

OK => OK

5. In the specification tree, double-click the design table and select the configuration 1. Click

OK. The message "BallNumber is too small" is displayed. For the configuration 1 of the

design table, this is the status of the check relations:

OK => KO

Keep your document open and proceed to the next task

Creating a Multiple Value Parameter

A multiple value parameter is created. Depending on this parameter value, a rule which is created
in the next task will display either a message or launch a macro.

1. Click the icon.

2. In the Formulas dialog box, select String in the New Parameter of type list. Select

Multiple values in the with list, then click 'New Parameter of type'.

3. In the Value List of String dialog box, enter one-by-one the step1, step2 and step3 values.

Click OK.

4. In Edit name or value of the current parameter, replace the String.1 string with

Status, then click OK. The Status parameter is added to the specification tree.

Creating a Rule

This task creates a rule which displays a message prompting you to import a file or launches a
macro.

1. In the specification tree, double-click the design table feature and select the configuration 3

in the table which is displayed. You are back to 21 ball bearing.

2. Access the Knowledge Advisor workbench

3. Click the icon.

4. Enter the Rule.2 string in the Name field of the first dialog box. Click OK.

5. Copy/Paste the code below into the rule edition box (modify the macro path):

if Status == "step2"
Message("Import the KwrBallBearingImport text file")
else if Status == "step3"
LaunchMacroFromFile("e:/tmp/KwrBearing.CATScript")

6. Click OK to add the rule to the document and execute it.

7. Click the icon. In the "Formulas" dialog box, select the Status parameter and replace

its step1 value with step2. Click OK. A message asks you to import the

KwrBallBearingImport text file.

8. Click Import and select the KwrBallBearingImport.txt file. Three parameters are then

added to the document. Click OK in the dialog box displaying the parameters and formulas

to be imported.

9. Select the Status parameter and replace the step2 value with step3. Click OK. The

KwrBearing.CATScript is executed and a circular pad is created.

[

file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrBallBearingImport.txt
file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrBallBearingImport.txt
file:///E|/www/meidocr12/Doc/online/kwrug_C2/samples/KwrBearing.CATScript

System of Three Equations in Three Variables
When designing a product, you may come across a system of equations to be solved. Whatever these equations
(linear or not), CATIA provides you with resolution methods. These methods are the Simulated Annealing
algorithm and the "SetOfEquations" capability.

Can you use either method ?
If your set of equations is purely mathematical, the answer is yes. Otherwise, no. The SetOfEquations capability
cannot solve systems using CATIA functions such as measures.
To solve a system of equations using measures, you must use the Simulated Annealing algorithm.
The Simulated Annealing algorithm is provided with the Product Engineering Optimizer product. The set of
equations is to be specified as constraints and the variables are to be specified as free parameters. This
resolution method is quite good although sometimes a bit long and you can use it to solve a broad range of
cases. The trick about this algorithm is to adjust the precision and the other algorithm parameters. The example
developed below works well with both methods. Just to illustrate a system that cannot be solved by both
methods, you can draw a cube and create two user parameters: CubeSurface (of Area type) and CubeVolume
(of Volume type). To calculate CubeSurface and CubeVolume, you can write either:

CubeSurface = smartWetarea (PartBody\Pad.1)
CubeVolume = smartVolume (PartBody\Pad.1)

or

CubeVolume = smartVolume (PartBody\Pad.1)

Solving the System of Equations by a Simulated Annealing

1. Open a new part document.

2. Create six real type parameters by using the f(x) capabilities. Name these parameters x1, y1, z1 and x2,

y2, z2.

3. Access the Product Engineering Optimizer product and click the icon.

4. In the Constraints tab, specify the three constraints (enter the constraints one-by-one)

x1 + y1 - z1 == 0

x1*y1 - z1 == 0

sin(x1*1rad)**2 - y1 - 1 == 0

Specify a precision of 0.01 for all three constraints.

If need be, see the Product Engineering Optimizer User's Guide.

5. In the Problem tab, specify x1, y1, z1 as free parameters and 1 as Step value for all three parameters.

6. Run the optimization process in Simulated Annealing mode. You can use the default termination criteria.

After the process has finished running, the x1, y1 and z1 values are close to the one below:

x1 = 0.454
y1 = -0.807
z1 = -0.363

Keep your document open and proceed to the next task.

Solving the System of Equations by the "SetOfEquations"
Capability

1. Access the Knowledge Advisor workbench, then click the icon.

2. In the "Set of Equations" editor, enter the set of equations below:

x2 + y2 == z2 ;

x2*y2 == z2;

sin(x2*1rad)**2 == y2 +1

Specify x2, y2 and z2 as Unknown parameters by using the Parse arrow button ().

3. Click OK. The system of equations is solved. The values below are displayed in the specification tree

x2 = 0.448043478

y2 = -0.812335288

z2 = -0.364229828

[

Reference
The packages listed below are those displayed in the Browser when specifying a loop body.

Basic Wireframe Package GSD Package

GSD Shared Package Knowledge Expert

Mechanical Modeler Part Design

Part Shared Package Standard

 Basic Wireframe Package
GSMLine

GSMCircle
GSMPlane
GSMPoint

[

 GSMLine

Definition:

A GSMLine is a line :

● generated by the Generative Shape Design
product.

● available in the BasicWireFrame Package.

To know more about lines, see the Generative
Shape Design User's Guide.

Attributes:
LineType

 A line is defined by its type. The attribute to be used is LineType. The syntax to be used is:
LineType = i, i corresponding to the type of line that you want to create.

 Please find below an equivalence table listing the existing types of lines that you can create and
the digit to indicate.

 Line Type in GSD Line Type in the Package Corresponding digit

 Point to Point GSMLinePtPt 0

 Point-Direction GSMLinePtDir 1

 Angle to Curve GSMLineAngle 2

 Tangent to Curve GSMLineTangency 3

 Normal to surface GSMLineNormal 4

 Intersection betw. 2 planes GSMLineBiTangent 5

As mentioned above, you may create 7 different line sub-types. Please find below a description of each sub-
type, as well as its attributes and the syntax to use.

Point to Point Line (GSMLinePtpt)

The sub-type to be used in this case is GSMLinePtpt which defines the line extremities. The following
attributes are available for this sub-type:

● FirstPoint (feature)

● SecondPoint (feature)

● Support (feature)

● Length1 (length, optional for both
combinations)

● Length2 (length, optional for both
combinations)

 These attributes can be combined as follows:

1st combination 2nd combination

● the FirstPoint which is defined by the syntax
below:
FirstPoint = object: ..\..\theFirstPoint;

● the SecondPoint which is defined by the syntax
below:
SecondPoint = object: ..\..\theSecondPoint;

● Length1 which is defined by the syntax below:
Length1=200mm;

● Length2 which is defined by the syntax below:
Length2=150mm;

● the FirstPoint which is defined by the syntax
below:
FirstPoint = object: ..\..\theFirstPoint;

● the SecondPoint which is defined by the syntax
below:
SecondPoint = object: ..\..\theSecondPoint;

● the Support

Point-Direction (GSMLinePtDir)

The sub-type to be used in this case is GSMLinePtDir which defines the line direction. The following attributes
are available for this sub-type:

● Length1

● Length2

● Direction

● Orientation

● RefPoint

● Support

These attributes can be combined as follows:

Combination

● Length1 which is defined by the syntax below:
Length1 = 100mm;

● Length2 which is defined by the syntax below:
Length2 = 10mm;

● Direction which is defined by the syntax below:
Direction = object: ..\..\Plane.2;

● Orientation which is defined by the syntax below:

● RefPoint which is defined by the syntax below:
RefPoint = object: ..\..\Point.2;

● Support which is defined by the syntax below:
SecondPoint = object: ..\..\'xy plane';

Tangent to Curve (GSMLineTangency)

The sub-type to be used in this case is GSMLineTangency. The following attributes are available for this sub-
type:

● Curve: Reference curve used to define
the tangency.

● Length1

● Length2

● Orientation

● RefPoint: Reference point used to
define the tangency.

● Support

These attributes can be combined as follows:

Combination

● Curve which is defined by the syntax below:
Curve = object: ..\..\Spline.2;

● Length1 which is defined by the syntax below:
Length1 = 100mm;

● Length2 which is defined by the syntax below:
Length2 = 10mm;

● Orientation which is defined by the syntax below:

● RefPoint which is defined by the syntax below:
RefPoint = object: ..\..\Point.2;

● Support which is defined by the syntax below:
SecondPoint = object: ..\..\'xy plane';

Normal to surface (GSMLineNormal)

The sub-type to be used in this case is GSMLineNormal. The following attributes are available for this sub-
type:

● Orientation

● RefPoint

● RefSkin

 These attributes can be combined as follows:

Combination

● RefPoint which is defined by the syntax below:
RefPoint = object: ..\..\Point.2;

● Support which is defined by the syntax below:
RefSkin = object: ..\..\Extrude.1;

[]

file:///E|/www/meidocr12/Doc/online/cfyugpkt_C2/cfyugpackagebasicwireframe.htm

 GSMCircle

Definition:

A GSMCircle is a circle:

● generated by the Generative
Shape Design product.

● available in the
BasicWireFrame Package.

To know more about circles, see
the Generative Shape Design
User's Guide.

Attributes:
PointType

A point is defined by the following attributes:
● CircleType: The syntax to be used is CircleType = i, i corresponding to the type of circle that

you want to create.

● CircleRelimitation: The syntax to be used is CircleRelimitation =.

● EndAngle: The syntax to be used is EndAngle = xxxdeg.

● StartAngle: The syntax to be used is StartAngle =xxxdeg.

 Please find below a table listing the existing types of circles that you can create and the digit to
indicate.

 Plane Type in GSD Plane Type in the
Package Corresponding digit

 Three Points GSMPCircle3Points 3

 Center and Radius GSMCircleCtrRad 0

 Center and Point GSMCircleCtrPt 1

As mentionned above, you may create 3 different circle sub-types. Please find below a description of each sub-
type, as well as its attributes and the syntax to use.

Three Points (GSMCircle3Points)

The sub-type to be used in this case is GSMCircle3Points which enables you to create a circle passing through
3 points. The following attributes are available for this sub-type:

● Element1: First point

● Element2: Second point

● Element3: Third point

● Support: Support surface onto which the
circle will be projected (optionnal)

 These attributes can be combined as follows:

Combination

● Element1 which is defined by the syntax below:
Element1 = object: ..\Point.1;

● Element2 which is defined by the syntax below:
Element2 = object: ..\Point.2;

● Element3 which is defined by the syntax below:
Element3 = object: ..\Point.3;

● Support which is defined by the syntax below:

Center and Radius (GSMCircleCtrRad)

The sub-type to be used in this case is GSMCircleCtrRad which enables you to create a circle by indicating its
center and its radius. The following attributes are available for this sub-type:

● Center: Point that will be the center
of the circle.

● FirstDirection

● Geodesic

● Radius: Radius of the circle.

● Support: Support plane or surface
onto which the circle is to be created.

These attributes can be combined as follows:

Combination

● Center which is defined by the syntax below:
Center = object: ..\Point.1;

● FirstDirection which is defined by the syntax below:

● Geodesic which is defined by the syntax below:

● Radius which is defined by the syntax below:
Radius = 120mm;

● Support which is defined by the syntax below:
Support = object: ..\Extrude.1;

Center and point (GSMCircleCtrPt)

The sub-type to be used in this case is GSMCircleCtrPt which enables you to create a circle by indicating its
center and a point. The following attributes are available for this sub-type:

● Center: Point used as the center of the
circle.

● Geodesic:

● RefPoint: Second point used to create
the circle.

● Support: Support plane or surface where
the circle is to be created.

Combination

● Center which is defined by the syntax below:
Center = object: ..\Point.1;

● Geodesic which is defined by the syntax below:

● RefPoint which is defined by the syntax below:
RefPoint = object: ..\Point.1;

● Support which is defined by the syntax below:
Support = object: ..\Extrude.1;

file:///E|/www/meidocr12/Doc/online/cfyugpkt_C2/cfyugpackagebasicwireframe.htm

 GSMPlane

Definition:

A GSMPlane is a plane:

● generated by the Generative Shape Design product.

● available in the BasicWireFrame Package.

To know more about planes, see the Generative Shape Design
User's Guide.

Attributes:
PlaneType

 A plane is defined by its type. The attribute to use is PlaneType. The syntax to be used is: PlaneType = i, i
corresponding to the type of plane that you want to create.

 Please find below a table listing the existing types of planes that you can create and the digit to indicate.

 Plane Type in GSD Plane Type in the Package Corresponding digit

 Equation GSMPlaneEquation 0

 Through 3 points GSMPlane3Points 1

 Through 2 lines GSMPlane2Lines 2

 Through a point and a line GSMPlane1line1Pt 3

 Normal to a curve GSMPlane1Curve 4

 Tangent to a surface GSMPlaneTangent 5

 Normal to a plane GSMPlaneNormal 6

As mentionned above, you may create 7 different plane sub-types. Please find below a description of each sub-type, as well as
its attributes and the syntax to use.

Equation (GSMPlaneEquation)

The sub-type to be used in this case is GSMPlaneEquation which enables you to create a plane by using an equation. The
following attributes are available for this sub-type:

● A (First component of the equation)

● B (Second component of the equation)

● C (Third component of the equation)

● Length

● RefPoint (point used to position the plane through this
point)

 These attributes can be combined as follows:

1st Combination 2nd Combination

● A which is defined by the syntax below:
A=31; //A value is required

● B which is defined by the syntax below:
B=-47; //A value is required

● C which is defined by the syntax below:
C=-24; //A value is required

● Length: enables the user to indicate the required
length. It is defined by the syntax below:
Length=24mm

● A which is defined by the syntax below:
A=31; //A value is required

● B which is defined by the syntax below:
B=-47; //A value is required

● C which is defined by the syntax below:
C=-24; //A value is required

● RefPoint which is defined by the syntax below:
RefPOint = object: ..\Point ;

Through 3 points (GSMPlane3Points)

The sub-type to be used in this case is GSMPlane3Points which creates a plane passing through 3 points. The following
attributes are available for this sub-type:

● Element1 (First point)

● Element2 (Second point)

● Element3 (Third point)

These attributes can be combined as follows:

Combination

● Element1 which is defined by the syntax below:
Element1 = object: ..\Point.1;

● Element2 which is defined by the syntax below:
Element2 = object: ..\Point.2;

● Element3 which is defined by the syntax below:
Element3 = object: ..\Point.3;

Through 2 Lines (GSMPlane2Lines)

The sub-type to be used in this case is GSMPlane2Lines which enables to create a plane passing through 2 lines. The following
attributes are available for this sub-type:

● Element1 (First line)

● Element2 (Second line)

Combination

● Element1 which is defined by the syntax below:
Element1 = object: ..\Line.1;

● Element2 which is defined by the syntax below:
Element2 = object: ..\Line.2;

Through a Point and a Line (GSMPlane1line1Pt)

The sub-type to be used in this case is GSMPlane1Line1Pt which enables to create a plane passing through a line and a point.
The following attributes are available for this sub-type:

● Line: Point used to create the plane.

● RefPoint: Point used to create the plane.

The attributes should be used as follows:

Combination

● Line which is defined by the syntax below:
Line = object: ..\Line.1;

● RefPoint which is defined by the syntax below:
RefPoint = object: ..\Point.2;

Normal to a Curve (GSMPlane1Curve)

The sub-type to be used in this case is GSMPlane1Curve which enables you to create a plane normal to a curve at a specified
point.

● Element1 (Spline)

This attribute is to be used as follows:

Combination

● Line which is defined by the syntax below:
Line = object: ..\Spline.1;

Tangent to a Surface (GSMPlaneTangent)

The sub-type to be used in this case is GSMPlaneTangent which enables you to create a plane tangent to a surface at a
specified point. The following attributes are available for this sub-type:

● RefPoint (Point)

● Support (Surface)

These attributes are to be used as follows:

Combination

● Support which is defined by the syntax below:
Support = object: ..\Spline.1;

● RefPoint which is defined by the syntax below:
RefPoint = object: ..\Point.4;

Normal to a Plane (GSMPlaneNormal)

The sub-type to be used in this case is GSMPlaneNormal. The following attributes are available for this sub-type:

● Curve: Reference curve used to create the plane.

● RefPoint: Reference point used to create the plane.

These attributes are to be used as follows:

Combination

● Curve which is defined by the syntax below:
Support = object: ..\Spline.1;

● RefPoint which is defined by the syntax below:
RefPoint = object: ..\Point.4;

file:///E|/www/meidocr12/Doc/online/cfyugpkt_C2/cfyugpackagebasicwireframe.htm

 GSMPoint

Definition:

A GSMPoint is a point:

● generated by the Generative Shape
Design product

● available in the BasicWireFrame
Package.

To know more about points, see the
Generative Shape Design User's Guide.

Attributes:
PointType

 A point is defined by its type. The attribute to use is PointType. The syntax to be used is:
PointType = i, i corresponding to the type of point that you want to create.

 Please find below a table listing the existing types of points that you can create and the digit to
indicate.

 Plane Type in GSD Plane Type in the
Package Corresponding digit

 Coordinates GSMPointCoord 0

 On surface GSMPointOnSurface 1

 On curve GSMPointOnCurve 2

 On plane GSMPointOnPlane 3

 Circle center GSMPointCenter 4

As mentionned above, you may create 5 different point sub-types. Please find below a description of each sub-
type, as well as its attributes and the syntax to use.

Coordinates (GSMPointCoord)

The sub-type to be used in this case is GSMPointCoord which enables you to create coordinates. The following
attributes are available for this sub-type:

● RefPoint (Reference point, optionnal). If
specified, x, y, and z are indicated in a
mark whose origin is this reference point.

● X (First coordinate)

● Y (Second coordinate)

● Z (Third coordinate)

 These attributes can be combined as follows:

Combination

● RefPoint (Reference point, optionnal)

● X which is defined by the syntax below:
X = 10mm;

● Y which is defined by the syntax below:
Y = 10mm;

● Y which is defined by the syntax below:
Z = 10mm;

On surface (GSMPointOnSurface)

The sub-type to be used in this case is GSMPointOnSurface which creates a point on a plane. The following
attributes are available for this sub-type:

● Direction: Element taking its orientation
as reference direction or a plane taking
its normal as reference direction

● RefPoint: Reference point. By default, the
surface middle point is taken as
reference.

● Support: Surface where the point is to be
created.

● Values: Distance along the reference
direction used to display a point.

These attributes can be combined as follows:

Combination

● Direction which is defined by the syntax below:
Direction = object: ..\Line.1;

● Support which is defined by the syntax below:
Support= object: ..\Extrude.1;

● Values which is defined by the syntax below:
Values = 12mm;

On curve (GSMPointOnCurve)

The sub-type to be used in this case is GSMPointOnCurve which enables to create a point on a curve. The
following attributes are available for this sub-type:

● Boundary: Not available.

● RefPoint: Reference point. If not
specified, it is the extremity of the curve.

● Support: Curve

● Values: Distance between the reference
point and this point.

Combination

● Refpoint which is defined by the syntax below:
RefPoint= object: ..\Point.1;

● Support which is defined by the syntax below:
Support = object: ..\Line.1;

● Values which is defined by the syntax below:
Values = 12mm;

On plane (GSMPointOnPlane)

The sub-type to be used in this case is GSMPlane1Line1Pt which enables to create a plane passing through a
line and a point. The following attributes are available for this sub-type:

● Direction (optionnal). When specified,
indicates the direction

● H: Vector.

● RefPoint: point used to define a reference
for computing coordinates in the plane.

● Support: Plane on which the point will be
created.

● V: Vector.

The attributes should be used as follows:

Combination

● Direction which is defined by the syntax below:
Direction = object: ..\Line.1;

● H which is defined by the syntax below:
H = 150mm;

● RefPoint which is defined by the syntax below:
RefPoint= object: ..\Point.1;

● Support which is defined by the syntax below:
Support = object: 'xy plane'

● V which is defined by the syntax below:
V = 150mm;

Circle Center (GSMPointCenter)

The sub-type to be used in this case is GSMPointCenter which enables you to define the center of a circle.

● Curve: circle, circular arc, or ellipse.

This attribute is to be used as follows:

Combination

● Curve which is defined by the syntax below:
Curve = object: ..\Extrude.1;

file:///E|/www/meidocr12/Doc/online/cfyugpkt_C2/cfyugpackagebasicwireframe.htm

Part Design Package

Types Names Attributes

- -

Chamfer Angle
Length1
Length2

- -

Counterbored Hole CounterboreDepth
CounterboreDiameter

Counterdrilled Hole CounterdrillAngle
CounterdrillDepth
CoutnerdrillDiameter

Countersunk Hole CountersinkAngle
CountersinkDepth

- -

Draft Angle

See PartSharedPackage -

Groove EndAngle
StartAngle

Hole BottomAngle
BottomType
Depth
Diameter
DiameterThread
HoleType
LimitType
Pitch
TapSide
Threaded
ThreadingDepth

- -

Pad FirstLength
SecondLength

See PartSharedPackage -

Pocket FirstLength
SecondLength

Shaft EndAngle
StartAngle

file:///E|/www/meidocr12/Doc/online/cfyugpkt_C2/cfyugscpcounterboredhole.htm
file:///E|/www/meidocr12/Doc/online/cfyugpkt_C2/cfyugscpcounterdrilledhole.htm
file:///E|/www/meidocr12/Doc/online/cfyugpkt_C2/cfyugScriptpartsharedpackage.htm
file:///E|/www/meidocr12/Doc/online/cfyugpkt_C2/cfyugScriptpartsharedpackage.htm

Shell DefaultInsideThickness
DefaultOutsideThickness

SimpleHole

- -

- -

Split -

TaperedHole TaperAngle

Thickness DefaultThickness

ThickSurface TopOffset
BottOffset

[

Box

Definition

A box is a pad extruded from a rectangular sketch. It is defined by three properties:

● the Length which is the pad first limit

● the Width

● and the Height which define the initial sketch.

Example
MyBox isa CATPart
 {
 BoxPart isa Part
 {
 PartBody isa BodyFeature
 {
 // Create a box
 Box1 isa Box
 {
 // Specify the box properties
 Width = 20.0 mm ;
 Height = 25.0 mm ;
 Length = 15.0 mm ;
 }
 }
 }
 }

Chamfer

Definition

A chamfer is a cut through the thickness of a part at an angle, giving a sloping edge. It is defined by three
properties:

● the Angle property which must be expressed in degrees

● the Length1 property

● the Length2 property

Important Notes:

● When you create a chamfer named ChamferN, it is recommended to access its attributes through the
ChamferRibbon.N parameter (use the same number).

● A chamfer has a Length2 attribute which is the default chamfer length. You don't have to manipulate this
attribute in a script.

● In place of using the ChamferRibbon.i attribute, you can use the RibbonList[1] attribute. The RibbonList
contains only a single item.

To specify a chamfer within your script, you must have a part open, then proceed as follows:

1. Create a Chamfer by using the isa function

Chamfer1 isa Chamfer () { }

2. Right-click anywhere inside the parentheses and select the 'Get Edge' or the 'Get Surface' command from

the contextual menu. Then, in the geometry area, select the edge or surface to be chamfered.

 A 45 deg chamfer is created by default.

Example

MyBox isa CATPart
 {
 BoxPart isa Part
 {
 PartBody isa BodyFeature
 {
 // Create a box
 Box1 isa Box
 {
 Width = 20.0 mm ;
 Height = 25.0 mm ;
 Length = 15.0 mm ;
 }
 // Create a chamfer
 // The edge definition must be captured
 // from the geometry area
 // Use the Get Edge command from the
 // contextual menu
 Chamfer1 isa Chamfer (Edge Definition)
 {
 Angle = 20 deg;
 Length1 = 5 mm ;
 }
 Chamfer2 isa Chamfer (Edge Definition)
 {
 Angle = 30 deg;
 Length1 = 10 mm ;
 }
 }
 }
 }

[

Cone

Definition

A cone is a shaft created by rotating a triangular sketch. It is defined by two properties:

● The Length parameter

● The Radius parameter.

Example
MyCone isa CATPart
 {
 ConePart isa Part
 {
 PartBody isa BodyFeature
 {
 // Create a cone
 Cone1 isa Cone
 {
 Radius = 20.0 mm ;
 Length = 15.0 mm ;
 }
 }
 }
 }

[

Counterbored Hole

Definition

Mechanical feature of Hole type you create when you click the icon in the Part Design workbench. For more
information, refer to the Part Design User's Guide.

A counterbored hole is defined with the following properties:

● CounterboreDepth

● CounterboreDiameter

[

Counterdrilled Hole

Definition

Mechanical feature of Hole type you create when you click the icon in the Part Design workbench. For more
information, refer to the Part Design User's Guide.

A counterdrilled hole is defined with the following properties:

● CounterdrillAngle

● CounterdrillDepth

● CounterdrillDiameter

[

Countersunk Hole

Definition

Mechanical feature of Hole type you create when you click the icon in the Part Design workbench. For more
information, refer to the Part Design User's Guide.

A countersunk hole is defined with the following properties:

● CountersinkAngle

● CountersinkDepth

[

Cylinder

Definition

A cylinder is a pad created by extruding a circular sketch. It is defined by two properties:

● the EndLimit\Length

● the Radius.

Example
Cylinder1 isa CATPart
 {
 Part isa Part
 {
 PartBody isa BodyFeature
 {
 // Create a cylinder
 Cyl1 isa Cylinder
 {
 Radius=15.0 mm;
 EndLimit=20.0 mm;
 }
 }
 }
 }

[

Hole

Definition

A hole is an opening through a feature. It is defined by eleven properties:

● BottomAngle

● BottomType

● Depth

● Diameter

● DiameterThread

● HoleType

● LimitType

● Pitch

● TapSide

● Threaded

● ThreadingDepth

There are 5 different types of holes:

● CounterboredHole

● CounterdrilledHole

● CountersunkHole

● SimpleHole

● TaperedHole

To specify a hole within your script, you have to use one of the holes listed above. Hole is the father type and
cannot be used.

[

file:///E|/www/meidocr12/Doc/online/cfyugpkt_C2/cfyugScpsimpleHole.htm

Pad

Definition

A pad is a feature created by extruding a sketch. It can be defined by three attributes:

● the sketch the pad is extruded from

● the FirstLimit\Length (or StartLimit\Length)

● the SecondLimit\Length (or EndLimit\Length).

A limit which is not specified is set by default to zero.

Example
// Use the Insert File Path command from the
// contextual menu to specify the path of the file
// to be imported

import sketch to be imported ;

myDocument isa CATPart
 {
 myPart isa Part
 {
 PartBody isa BodyFeature
 {
 Sketch isa Sketch.1
 {}
 P0 isa Pad("Sketch")
 {
 SecondLimit\Length=40.0mm;
 }
 }
 }
 }

In the script above, the P0 pad is created from the Sketch.1 sketch which is imported from the
PktSketchToImport.CATPart document.

[

file:///E|/www/meidocr12/Doc/online/cfyugpkt_C2/samples/PktSketchToImport.CATPart

Shaft

Definition

A shaft is a feature created by rotating a sketch around and axis. A shaft has two attributes:

● The StartAngle

● The EndAngle.

The sketch to be rotated must be imported from an external CATPart document. This external document must also include a
rotation axis.

Example
/* Use the Insert File Path command from the contextual menu */
/* to specify the sketch to be imported */
import sketch to be imported ;

MyShaft isa CATPart
 {
 myPart isa Part
 {
 PartBody isa BodyFeature
 {
 Sketch isa Sketch {}
 S0 isa Shaft("Sketch")
 {
 StartAngle = 20 deg ;
 EndAngle = 300 deg ;
 }
 }
 }
 }

Import the PktSketchToImport.CATPart sample to obtain a shaft similar to the one opposite.

[

file:///E|/www/meidocr12/Doc/online/cfyugpkt_C2/samples/PktSketchToImport.CATPart

Shell

Definition

A shell is a hollowed out feature. It is defined by three properties:

● the DefaultInsideThickness

● the DefaultOutsideThickness

● the Activity.

To specify a shell within your script, you must have a part open, then:

1. create a Shell by using the isa function

Shell1 isa Shell () { }

2. right-click anywhere inside the parentheses and select the 'Get Surface' function from the contextual

menu. Then, in the geometry area, select the face to be hollowed out.

 A 1mm thick shell is created by default.

Example
MyBox isa CATPart
 {
 BoxPart isa Part
 {
 PartBody isa BodyFeature
 {
 Box1 isa Box
 {
 Width = 20.0 mm;
 Height = 25.0 mm;
 Length = 15.0 mm;
 }
 Shell1 isa Shell (face definition)
 {
 ExtOffset = 2mm;
 IntOffset = 1mm;
 }
 }
 }
}

SimpleHole

Definition

Mechanical feature of Hole type you create when you click the icon in the Part Design workbench. For more
information, refer to the Part Design User's Guide.

[

Sphere

Definition

A sphere is a shaft created by rotating half a circle around an axis passing through the arc extremities. The only
property is the Radius.

Example

MySphere isa CATPart
 {
 SpherePart isa Part
 {
 PartBody isa BodyFeature
 {
 Sphere1 isa Sphere
 {
 Radius = 20.0 mm ;
 }
 }
 }
}

[

 ThickSurface

Definition

A ThickSurface is defined by three properties:

● the TopOffset, the thickness in one direction

● the BotOffset, the thickness in the one direction

● the Surface to be thickened.

Example
myThickSurface isa CATPart
 {
 myPart isa Part
 {
 OpenBody1 isa OpenBodyFeature
 {
 P1 isa GSMPoint
 {
 PointType = 0;
 TypeObject isa GSMPointCoord
 {
 X = 0mm;
 Y = 0mm;
 Z = 0mm;
 }
 }
 C isa GSMCircle
 {
 CircleType = 0;
 TypeObject isa GSMCircleCtrRad
 {
 Center = object : ..\..\P1;
 Support = object : ..\..\..\`xy-plane`;
 Radius = 150mm;
 }
 StartAngle = 0deg;
 EndAngle = 360deg;
 }
 Fi isa GSMFill
 {
 Boundary = object : ..\C;
 }
 }

 PartBody isa BodyFeature
 {
 Thick1 isa ThickSurface
 {
 TopOffset = 0.5mm;
 BotOffset = 10 mm;
 Surface = object : ..\..\OpenBody1\Fi;
 }
 }
 }
}

Torus

Definition

A torus is a shaft created by rotating a circular sketch around an axis. It is defined by two properties: the
InnerRadius and the SectionRadius.

[]

 Part Design
Some types and attributes were changed. Please find below a conversion table listing the old types, their
attributes, their new names (if any) as well as their attributes:

Old Types Names Old Attributes New Types Names New Attributes

Box Height
Length
Width

- -

Chamfer Activity
Length
RibbonList

Chamfer Angle
Length1
Length2

Cone Length
Radius

- -

- - Counterbored Hole CounterboreDepth
CounterboreDiameter

- - Counterdrilled Hole CounterdrillAngle
CounterdrillDepth
CoutnerdrillDiameter

- - Countersunk Hole CountersinkAngle
CountersinkDepth

Cylinder EndLimit
Radius

- -

 Draft Angle

Fillet Activity
RibbonList

See PartSharedPackage -

- - Groove EndAngle
StartAngle

Hole Activity
Diameter

Hole BottomAngle
BottomType
Depth
Diameter
DiameterThread
HoleType
LimitType
Pitch
TapSide
Threaded
ThreadingDepth

Limit Length - -

Pad EndLimit
StartLimit

Pad FirstLength
SecondLength

file:///E|/www/meidocr12/Doc/online/cfyugpkt_C2/cfyugScriptpartsharedpackage.htm

Pattern Activity
Nb1
Nb2
Step1
Step2

See PartSharedPackage -

- - Pocket FirstLength
SecondLength

Shell Activity
ExtOffset
IntOffset

Shell DefaultInsideThickness
DefaultOutsideThickness

- - SimpleHole

Sketch - - -

Sphere Radius - -

- - Split -

- - TaperedHole TaperAngle

- - Thickness DefaultThickness

Torus InnerRadius
SectionRadius

- -

file:///E|/www/meidocr12/Doc/online/cfyugpkt_C2/cfyugScriptpartsharedpackage.htm
file:///E|/www/meidocr12/Doc/online/cfyugpkt_C2/cfyugat0071.htm

Part Shared Package
Fillet

ConstantEdgeFillet
Pattern

[

ConstantEdgeFillet

Definition

A fillet is a curved surface of a constant or variable radius that is tangent to, and that joins two surfaces.
Together, these three surfaces form either an inside corner or an outside corner.

Important Note:

To specify a fillet within your script, you must have a part open, then:

1. Create a Fillet by using the isa keyword.

Fillet1 isa ConstantEdgeFillet () { }

2. Right-click anywhere inside the parentheses and select the 'Get Edge' or the 'Get Surface' function from

the contextual menu. Then, in the geometry area, select the edge or the face to be filleted.

Example
Box1 isa CATPart
 {
 BoxPart isa Part
 {
 PartBody isa BodyFeature
 {
 Box1 isa Box
 {
 Width = 20.0 mm ;
 Height = 25.0 mm ;
 Length = 15.0 mm ;
 }
 // Use the Get Edge or Get Surface
command
 // from the contextual menu to retrieve
 // the edge or face to be filleted
 Fillet1 isa ConstantEdgeFillet (face to
be filleted)
 {
 Radius =1.0 mm;
 }
 }
 }
 }

[

file:///E|/www/meidocr12/Doc/online/cfyugpkt_C2/cfyugScriptpartsharedpackage.htm

Fillet

Definition

Describes the feature you create when you click the icon in the Part Design workbench. For more
information, please refer to the Part Design User's Guide. It is defined by one property:

● Radius

 There are 3 different types of fillets:

● ConstantEdgeFillet

● FaceFillet

● TriTangentFillet

[

file:///E|/www/meidocr12/Doc/online/cfyugpkt_C2/cfyugScriptpartsharedpackage.htm

Pattern

Definition

A pattern is a set of similar features repeated in the same part. Two types of patterns can be created with CATIA: the
rectangular patterns and the circular patterns. At present, only rectangular patterns can be generated from a script. A
rectangular pattern is defined by the following properties:

● Nb1, the number of elements to be replicated along the first direction

● Nb2, the number of elements to be replicated along the second direction

● Step1, the element spacing along the first direction

● Step2, the element spacing along the second direction

● Activity.

Syntax

pattern1 isa pattern [Nb1,Nb2] of feature_to_be_repeated

Example
MyBox isa CATPart
 {
 BoxPart isa Part
 {
 PartBody isa BodyFeature
 {
 Box1 isa Box
 {
 Width = 20 mm ;
 Height = 20 mm ;
 Length = 10 mm ;
 }
 // Use the Get Surface command from the
 // contextual menu to specify the hole
 // anchor
 Hole1 isa SimpleHole (Surface definition)
 {
 Diameter = 2.0 mm;
 }
 Pattern1 isa Pattern[3,4] of Hole1
 {
 Step1 = 5.0 mm;
 Step2 = 5.0 mm;
 }
 }
 }
 }

Standard Package

Old Types Names Old Attributes New Types Names New Attributes

-

-

Feature Id
Name
Owner

- - List -

-

-

Visualizable Color
Layer
Pick
Show

[]

file:///E|/www/meidocr12/Doc/online/cfyugpkt_C2/cfyugScriptpartsharedpackage.htm
file:///E|/www/meidocr12/Doc/online/cfyugpkt_C2/cfyugat0071.htm

 GSD Shared Package

Types Names Attributes

GSMAffinity AxisFirstDirection
AxisOrigin
AxisPlane
Ratio

GSMAxisToAxis

GSMRotate Angle
Axis

GSMScaling Ratio
Reference

GSMSymetry Reference

GSMTransformation Activity
ToTransfor

GSMTranslate Direction
Distance

[]

file:///E|/www/meidocr12/Doc/online/cfyugpkt_C2/cfyugat0071.htm
file:///E|/www/meidocr12/Doc/online/cfyugpkt_C2/cfyugScriptMechanicalModeler.htm

GSD Package

Types Names Attributes

GSMAssemble -

GSMBlend -

GSMBoundary -

GSMCombine Curve1
Curve2
Direction1
Direction2
SolutionType
SolutionTypeCombine

GSMConic -

GSMConnect Continuity1
Continuity2
Curve1
Curve2
Orientation
Orientation2
Point1
Point2
Tension1
Tension2
Trim

GSMCorner Direction
Element1
Element2
Orientation
Orientation2
Radius
Support
Trim

GSMCurve -

GSMCurvePar Geodesic
InvertLaw
Length
Mode
Offset
Orientation
Support
Type

GSMCurveSmooth -

GSMDirection DirType
ElementDir
RatioX
RatioY
RatioZ

GSMExtract -

GSMExtractContour -

GSMExtrapol -

GSMExtremum Direction
Direction2
Direction3
Extremum
Extremum2
Extremum3
Reference

GSMExtremumPolar -

GSMExtrude Direction
Element1
Length1
Length2
Orientation

GSMFill -

GSMFillet Element1
Element2
Radius

GSMFilletBiTangent

GSMGeom Activity

GSMGridFace Direction
Length
OffsetValue
Reference
Width

GSMHealing -

GSMHelix -

GSMIntersect Extrapol
IntersectSolutionPoint
ToIntersect1
ToIntersect2

GSMInverse InverseElem
InverseOrientation

GSMLawDistProj -

GSMLineCorner -

GSMLoft -

GSMNear MultiElement
ReferenceElement

GSMOffset Length
Offset
Orientation

GSMProject Direction
Normal
SolutionType
Support
ToProject

GSMReflectLine Angle
Direction
OrientationDirection
OrientationSupport
Support

GSMRevol Angle1
Angle2
Element1
Line
Orientation

GSMSphere -

GSMSpine -

GSMSpiral -

GSMSplit -

GSMSweep SweepType

GSMSweepCircle Angle
Guide
Radius
Reference
Spine

GSMSweepConic Guide
Parameter
Spine

GSMSweepSegment Angle
GuideCrv
GuideSurf
Length
Spine

GSMSweepSketch -

GSMTrim Element1
Element2
Orientation1
Orientation2

GSMWSupport -

GSOBump -

GSOJunction -

GSOSeatDiabolo BaseSurface
DraftAngle
DraftDirection
SeatSurface

GSOWrapCurve -

[]

GSMAssemble

Definition

A GSMAssemble is an object which joins at least two surfaces or two curves.
The surfaces or curves to be joined must be adjacent. See the Generative Shape Design User's Guide for more
information.

See the ..\..\ operator for how to specify the object path.

Example

Assemble isa CATPart
 {
 Assemble isa Part
 {
 Open_body.1 isa OpenBodyFeature
 {
 P1 isa GSMPoint
 {
 PointType = 0;
 TypeObject isa GSMPointCoord
 {
 X = 20mm;
 }
 }
 P2 isa GSMPoint
 {
 PointType = 0;
 TypeObject isa GSMPointCoord
 {
 X = -20mm;
 }
 }
 L isa GSMLine
 {
 LineType = 0;
 TypeObject isa GSMLinePtPt
 {
 FirstPoint = object: ..\..\P1;
 Length1 = 20mm;
 Length2 = 0mm;
 SecondPoint = object : ..\..\P2;
 }
 }
 dir1 isa GSMDirection
 {
 DirType = object : ..\..\`xy-plane`;
 }

 Extru1 isa GSMExtrude
 {
 Element1 = object : ..\L;
 Length1 = 20mm;
 Length2 = 0mm;
 // Direction = object: ..\dir1;
 Direction = object : ..\..\`xy-plane`;
 }

 Extru2 isa GSMExtrude
 {
 Element1 = object : ..\L;
 Length1 = 0mm;
 Length2 = 20mm;
 Direction = object : ..\..\`xy-plane`;
 }
 myAssemble isa GSMAssemble
 {
 Elements[1] = object: ..\Extru1;
 Elements[2] = object: ..\Extru2;
 }

 }
 }
 }

[]

file:///E|/www/meidocr12/Doc/online/cfyugpkt_C2/cfyugScriptGSDPackage.htm

GSMCurve Object

Definition

A GSMCurve is an object generated by the Generative Shape Design product. It is defined by an array of
elements:

● Elements[i]= object: ..\objecti ;

where i refers to the rank of the element selected to build the curve and objecti is the object
identifier in your script.

Example
GSMCurveDoc isa CATPart
{
 myPart isa Part
 {
 OBody isa OpenBodyFeature
 {
 P1 isa GSMPoint
 {
 PointType = 0;
 TypeObject isa GSMPointCoord
 {
 X = 50mm;
 Y = 100mm;
 Z = 150mm;
 }
 }
 P2 isa GSMPoint
 {
 PointType = 0;
 TypeObject isa GSMPointCoord
 {
 X = 50mm;
 Y = 0mm;
 Z = 150mm;
 }
 }
 P3 isa GSMPoint
 {
 PointType = 0;
 TypeObject isa GSMPointCoord
 {
 X = 0mm;
 Y = 0mm;
 Z = 150mm;
 }
 }

 L isa GSMCurve
 {
 Elements[1] = object : ..\P1;

 Elements[2] = object : ..\P2;
 Elements[3] = object : ..\P3;
 }
 }
 }
}

[]

file:///E|/www/meidocr12/Doc/online/cfyugpkt_C2/cfyugScriptGSDPackage.htm

GSMCurvePar

Definition

An GSMCurvePar object is a Generative Shape Design parallel curve.

It is defined by

● its Type

● its Orientation

● its Offset

● its Support

● its Length

● its Geodesic

● its InvertLaw

● its Mode.

Example
myDocument isa CATPart
 {
 myPart isa Part
 {
 OBody isa OpenBodyFeature
 {
 P1 isa GSMPoint
 {
 PointType = 0;
 TypeObject isa GSMPointCoord
 {
 X = 0mm;
 Y = 0mm;
 Z = 0mm;
 }
 }

 C isa GSMCircle
 {
 CircleType = 0;
 TypeObject isa GSMCircleCtrRad
 {
 Center = object : ..\..\P1;
 Support = object : ..\..\..\`xy-plane`;
 Radius = 20mm;
 }
 StartAngle = 0deg;

 EndAngle = 360deg;
 }

 Plane1 isa GSMPlane
 {
 PlaneType = 7;
 TypeObject isa GSMPlaneOffset
 {
 RefPlane = object: ..\..\..\`xy-plane`;
 Distance = -20mm;
 }
 }

 Proj isa GSMProject
 {
 Normal = 1;
 Support = object : ..\Plane1;
 ToProject = object : ..\C;
 }

 CP isa GSMCurvePar
 {
 Type=0;
 Orientation=0;
 Offset = object : ..\Proj;
 Support = object : ..\Plane1;
 Length = 10mm;
 }

 }
 }
 }

[]

file:///E|/www/meidocr12/Doc/online/cfyugpkt_C2/cfyugScriptGSDPackage.htm

GSMDirection

Definition

A GSMDirection is defined by the following properties:

● DirType (Dir = object: ..\..\thePlane;)

● ElementDir

● RatioX

● RatioY

● RatioZ

See the ..\..\ operator for how to specify the object path.

Example

See GSMAssemble.

]

file:///E|/www/meidocr12/Doc/online/cfyugpkt_C2/cfyugScriptGSDPackage.htm

GSMExtrude

Definition

A GSMExtrude object is a surface obtained by extruding a profile along a specified
direction. It is defined by the following properties:

● Element1 which is specified by using the syntax below:

Element1 = object : ..\theProfileToBeExtruded;

● Length1 and Length2 which allow you to specify the limits of the extruded surface

● Direction which is specified by using the syntax below:

Direction = object: ..\theDirectionOfExtrusion;

● Orientation

See the ..\..\ operator for how to specify the object path.

Example

See GSMAssemble.

[

file:///E|/www/meidocr12/Doc/online/cfyugpkt_C2/cfyugscpGSMAssemble.htm
file:///E|/www/meidocr12/Doc/online/cfyugpkt_C2/cfyugScriptGSDPackage.htm

GSMFill

Definition

A GSMFill is a surface that is obtained by filling a closed boundary.

It is defined by

● its Boundary:

Boundary = object : ..\theCurvetobeFilled;

See the ..\..\ operator for how to specify the object path.

Example

See GSMCircle.

[

file:///E|/www/meidocr12/Doc/online/cfyugpkt_C2/cfyugScriptGSDPackage.htm

GSMFillet

Definition

An GSMFillet object is curved surface of a constant or variable radius that is tangent to and joins two surfaces. Together these
three surfaces form either an
inner or outer corner. The properties of a GSMFillet are:

● Its Type

● its GSMFilletBiTangent object which is itself defined by two properties:

● Element1 which is specified by using the syntax below:

Element1 = object : ..\oneOfTheSurfaces;

● Element2 whose syntax is similar to Element2

See the ..\..\ operator for how to specify the object path.

Example
myIntersectionDocument isa CATPart
 {
 myPart isa Part
 {
 OBody isa Open_body
 {
 Po1 isa GSMPoint
 {
 Type = 0;
 TypeObject isa GSMPointCoord
 {
 Values[1] = 20mm;
 Values[2] = 0mm;
 Values[3] = 0mm;
 }
 }
 Po2 isa GSMPoint
 {
 Type = 0;
 TypeObject isa GSMPointCoord
 {
 Values[1] = -20mm;
 Values[2] = 0mm;
 Values[3] = 0mm;
 }
 }
 L isa GSMLine
 {
 Type = 0;
 TypeObject isa GSMLinePtPt
 {
 FirstPoint = object: ..\..\Po1;
 SecondPoint = object : ..\..\Po2;
 }
 }
 dir1 isa GSMDirection
 {
 ElementDir = object : ..\..\`xy-plane`;
 }

 dir2 isa GSMDirection
 {
 ElementDir = object : ..\..\`zx-plane`;
 }
 Extru1 isa GSMExtrude
 {
 Element1 = object : ..\L;
 Length1 = 20mm;
 Length2 = 20mm;
 Direction = object: ..\dir1;
 }
 Extru2 isa GSMExtrude
 {
 Element1 = object : ..\L;
 Length1 = 20mm;
 Length2 = 20mm;
 Direction = object: ..\dir2;
 }
 Inter isa GSMIntersect
 {
 ToIntersect1 = object : ..\Extru1;
 ToIntersect2 = object : ..\Extru2;
 }
 F isa GSMFillet
 {
 Type = 0;
 TypeObject isa GSMFilletBiTangent
 {
 Radius = 5mm;
 Element1 = object : ..\..\Extru1;
 Element2 = object : ..\..\Extru2;
 }
 }
 }
 }
}

[

[

file:///E|/www/meidocr12/Doc/online/cfyugpkt_C2/cfyugScriptGSDPackage.htm
file:///E|/www/meidocr12/Doc/online/cfyugpkt_C2/cfyugScriptGSDPackage.htm

GSMIntersect

Definition

A GSMIntersect object is wireframe geometry resulting from the intersection of two features. It is defined by the
following properties:

● ToIntersect1 which is specified by using the syntax below:

ToIntersect1 = object : ..\oneOfTheFeatures;

● ToIntersect2 whose syntax is similar to ToIntersect1

See the ..\..\ operator for how to specify the object path.

Example

See GSMFillet.

[

file:///E|/www/meidocr12/Doc/online/cfyugpkt_C2/cfyugScriptGSDPackage.htm

GSMLoft

Definition

A GSMLoft is surface obtained by sweeping one or more planar section curves along a spine, which may be
automatically computed or user-defined. The surface can be made to follow one or more guide curves. See the
Generative Shape Design User's Guide for more information.

See the ..\..\ operator for how to specify the object path.

GSMProject

Definition

A GSMProject is a Generative Shape Design projection. See the Generative Shape Design User's Guide for more
information.

It is defined by five properties:

● Normal which corresponds to the Projection type field in the Projection Definition dialog box (

Normal = 1 for an orthogonal projection - otherwise specify a direction, a GSMLine for example).

● Support which corresponds to the Support field in the Projection Definition dialog box

● ToProject which corresponds to the Projected field in the Projection Definition dialog box.

● Direction

● SolutionType

Example

See GSMSplit.

[

file:///E|/www/meidocr12/Doc/online/cfyugpkt_C2/cfyugScriptGSDPackage.htm

GSMSplit

Definition

A GSMSplit is an operation in which one element is cut by another element. See the Generative Shape Design User's
Guide for more information. A GSMSplit is defined by:

● the object to be cut:

ToCut = object : ..\theObjectToBeCut;

● the cutting object:

Cutting = object : ..\theCuttingObject;

See the ..\..\ operator for how to specify the object path.

Example
myDocument isa CATPart
 {
 myPart isa Part
 {
 OBody isa OpenBodyFeature
 {
 P1 isa GSMPoint
 {
 PointType = 0;
 TypeObject isa GSMPointCoord
 {
 X = 0mm;
 Y = 0mm;
 Z = 0mm;
 }
 }
 P2 isa GSMPoint
 {
 PointType = 0;
 TypeObject isa GSMPointCoord
 {
 X = 20mm;
 Y = 0mm;
 Z = 0mm;
 }
 }
 C isa GSMCircle
 {
 CircleType = 0;
 TypeObject isa GSMCircleCtrRad
 {
 Center = object : ..\..\P1;
 Support = object : ..\..\..\`xy-plane`;
 Radius = 20mm;
 }
 StartAngle = 0deg;
 EndAngle = 360deg;

 }
 dir isa GSMDirection
 {
 ElementDir = object : ..\..\`xy-plane`;
 }
 Extrude isa GSMExtrude
 {
 Element1 = object : ..\C;
 Length1 = 20mm;
 Length2 = 20mm;
 Direction = object: ..\dir;
 }
 Pln_tgt1A isa GSMPlane
 {
 PlaneType = 5;
 TypeObject isa GSMPlaneTangent
 {
 RefPoint = object : ..\..\P2;
 Support = object :..\..\C;
 }
 }
 C2 isa GSMCircle
 {
 CircleType = 0;
 TypeObject isa GSMCircleCtrRad
 {
 Center = object : ..\..\P2;
 Support = object : ..\..\Pln_tgt1A ;
 Radius = 10mm;
 }
 StartAngle = 0deg;
 EndAngle = 360deg;
 }
 Proj isa GSMProject
 {
 Normal = 1 ;
 Support = object : ..\Extrude;
 ToProject = object : ..\C2;
 }
 mySplit isa GSMSplit
 {
 ToCut = object : ..\Extrude;
 Cutting = object : ..\Proj;
 }
 }
}
}

[

file:///E|/www/meidocr12/Doc/online/cfyugpkt_C2/cfyugScriptGSDPackage.htm

GSMSweep

Definition

A GSMSweep is a surface obtained by extruding or sweeping a curve along another curve. See the Generative
Shape Design User's Guide for more information.

It is defined by

● its SweepType

GSMSweepSegment properties:

● Spine

● GuideCrv = Guide curve 1

● GuideSurf = Reference surface

● Angle

● Length

Example

See GSMCircle.

[

file:///E|/www/meidocr12/Doc/online/cfyugpkt_C2/cfyugScriptGSDPackage.htm

Knowledge Expert
Knowledge Expert Rule Bases Objects
Knowledge Expert Rule Sets Objects
Knowledge Expert Rules and Checks

[

Knowledge Expert Rules and Checks

Definition

Expert Rules and Expert Checks are features generated by the Knowledge Expert product. Rules and Checks are
regrouped into rule sets. Rule sets belong to a rule base. When writing a script with rules and checks you must
comply with the Rule Base/Rule Set hierarchy. Refer to the Knowledge Expert User's Guide for more information
on the concepts behind the expert rules and checks.

Example
myDocument isa CATPart
{
 myPart isa Part
 {
 RBase isa KWERuleBase
 {
 RSet isa KWERuleSet
 {
 C isa KWECheck
 {
 Variables="P:Pad";
 RuleBody="P\SecondLength>10.0mm";
 }
 R isa KWERule
 {
 Variables="P:Pad";
 RuleBody="if P\FirstLength==10.0mm P\FirstLength=20.0mm";
 }
 }
 }
 }
}

[

file:///E|/www/meidocr12/Doc/online/cfyugpkt_C2/cfyugScriptKnowledgeware.htm

Knowledge Expert Rule Bases Objects

Definition

Rule bases are features generated by the Knowledge Expert product. Refer to the Knowledge Expert User's
Guide for more information on the concepts behind this type of feature.

file:///E|/www/meidocr12/Doc/online/cfyugpkt_C2/cfyugScriptKnowledgeware.htm

Knowledge Expert Rule Sets Objects

Definition

Rule sets are features generated by the Knowledge Expert product. Refer to the Knowledge Expert User's Guide
for more information on the concepts behind this type of feature.

[

file:///E|/www/meidocr12/Doc/online/cfyugpkt_C2/cfyugScriptKnowledgeware.htm

 Mechanical Modeler
Some types and attributes were changed. Please find below a conversion table listing the old types, their
attributes, their new names (if any) as well as their attributes:

BodyFeature GeometryFeature

MechanicalFeature OpenBodyFeature

OpenBodyFeature

[

BodyFeature

Definition

A body is the combination of several features within a part. For more information, see the Part Design User's
Guide.

Example
BodyDoc isa CATPart
 {
 BodyPart isa Part
 {
 Body isa BodyFeature
 {
 // Create a sphere
 Sphere1 isa Sphere
 {
 Radius = 15.0 mm;
 }
 // Create a torus
 Torus1 isa Torus
 {
 InnerRadius = 20.0 mm ;
 SectionRadius = 10.0 mm ;
 }
 }
 }
 }

[

file:///E|/www/meidocr12/Doc/online/cfyugpkt_C2/cfyugScriptMechanicalModeler.htm

Workbench Description
The Knowledge Advisor Menu Bar

The menu bar available in the Knowledge Advisor workbench is the standard one.

The Knowledge Toolbar

The Knowledge toolbar is modified when the Knowledge Advisor product is installed. The Knowledge Inspector
icon is displayed.

The Formula icon allows you to create parameters and to specify relations between
parameters.

The Design Table icon enables you to manage component families in .xls or .txt files.

The Law icon (fog) enables you to create relations intended to be used in the creation of

shape design parallel curves.

The Knowledge Inspector icon allows you to query a design to determine and preview the
results of changing any parameters.

The Equivalent Dimensions icon allows you to make dimensions equivalent.

The Lock/Unlock selected parameters... icon allows you to lock or unlock parameters.

The Knowledge Advisor Toolbar

The figure below shows the Knowledge Advisor toolbar.

file:///E|/www/meidocr12/Doc/online/kwrug_C2/images/kwrLawEditor.gif

Here is a brief description of each icon.

The Rule icon provides access to the rule editor. Click this icon to create a rule, write its code,
test its syntax and apply it to your document.

The Check icon provides access to the check editor. Click this icon to create a check, write its
code, tests its syntax and apply it to your document.

The Reactions icon allows you to create a script specifying how to change some feature
attributes when an event occurs. Clicking this icon opens a reaction window.

The Measure Update icon starts the update of relations using measures.

The Parameters Explorer icon allows you to add new parameters to a feature.

The Add parameters on geometry icon allows you to add new parameters to a face, a vertex,
or an edge.

The Add Set of Parameters icon allows you to create sets of parameters. These sets of
parameters are all grouped below the Parameters node.

The Add Set of Relations icon allows you to create sets of relations below the Relations node.

The Macros with arguments icon enables you to launch a macro wit arguments.

The Actions icon allows you to create a script. Clicking this icon opens an action window.

The List icon allows you to create a list of features that will be located under the Parameters
node in the specification tree. Clicking this icon opens the List edition window.

The Comment & URLs icon allows you to add URLs to user parameters or relations.

The Update icon enables you to update a document without exiting the Knowledge Advisor
workbench.

The Set of Equations icon enables you to solve a set of equations.

Glossary
Many of the definitions included in this glossary are only pertinent within the CATIA knowledgeware context.

Symbols

| (operator) Breaks a single line message into a multiple line message. Can only be used in
the Message function when programming rules and checks.

.CATScript The extension of a macro file generated by CATIA Version 5. A macro file can be
specified as the argument of the LaunchMacroFromFile function which can be
called in rules and checks.

.txt The extension of a human-readable file composed of text characters. This file
format can be used as an import file format when importing parameters and
formulas.

.xls The extension of an Excel file. This file format can be used as an import file
format when importing parameters and formulas under Windows™.

A

activity A property which defines whether a relation is applied to a document or not. The
activity value is either true or false. It is indicated by an icon in the specification
tree and can also be read in the document parameter list.

association A link between a document parameter and its equivalent parameter in an external
design table. Associations are to be created when the document parameter
names do not correspond exactly to the parameter names read in the design
table.

C

check A set of statements intended to provide the user with a clue as to whether certain
conditions are fulfilled or not. A check does not modify the document it is applied
to. A check is a feature. In the document specification tree, it is displayed as a
relation that can be activated and deactivated. Like any feature, a check can be
manipulated from its contextual menu.

configuration A row in the design table. A configuration is a consistent set of parameter values
that can be applied to a document.

D

design table A table containing values to be potentially applied to a document to manage its
parameter values. It can be created from the document parameters or from an
external file. A design table is a feature. In the document specification tree, it is
displayed as a relation that can be activated or deactivated. Like any feature, a
design table can be manipulated from its contextual menu.

dictionary The set of parameters, operators, keywords, functions and other components that
make up the language to be used to write formulas, rules and checks. The
formula, rule and check editors provide you with an interactive view of the
dictionary.

F

formula A relation specifying a constraint on a parameter. The formula relation is a one-
line statement. Its left part is the parameter to be constrained, the right part is a
relation taking as its variables other parameters. A formula is a feature. In the
document specification tree, it is displayed as a relation that can be activated or
deactivated. Like any feature, a formula can be manipulated from its contextual
menu.

K

knowledgeware The set of software components dedicated to the creation and manipulation of
knowledge-based information. Knowledge-based information consists of rules
and other types of relations whereby designers can save their corporate know-
how and reuse it later on to drive their design processes.

Knowledge Inspector An analysis tool which helps users understand how changing any property of their
design (such as material, pressure, or a dimensional parameter) changes the
operation or design of the product on which they are working. The Knowledge
Inspector offers two options:

● "What if" to examine interactions of parameters with each other and with the
rules that make up the product's specifications

● "How to" to see how a design can be changed to achieve a desired result

M

magnitude type parameter
A parameter whose value is defined by a quantity expressed in specific units.
Length, Angle, Time parameters are magnitude type parameters. Boolean, Real,
String and Integer parameters are not magnitude type parameters.

P

parameter A feature defining a document property.

R

reaction A Knowledgeware Advisor feature that reacts to events on an object called the
source.

relation A knowledgeware feature which, depending on certain conditions:
● sets parameter values

● displays a message

● or runs a macro.

Knowledgeware relations are formulas, checks, rules and design tables.

rule A set of instructions, generally based on conditional statements, whereby the
relationship between parameters is controlled. In addition, depending on the
context described by the rule instructions, CATIA macros can be executed and
messages can be displayed. A rule is a feature. In the document specification
tree, it is displayed as a relation that can be activated or deactivated. Like any
feature, a rule can be manipulated from its contextual menu.

W

wizard A form of user assistance that guides the user through a difficult or complex task
within an application. The formula wizard helps the user typing formulas by
picking up parameters either in the dictionary, or in the geometry area or in the
specification tree.

Index

A
AbsoluteId method

action

activating a component

activity

adding a parameter to a feature

adding a parameter to an edge

adding a row to a design table external file

adding URLs

analysis operators

analysis tool

applying ranges to parameters by using a rule

arithmetic operators
associating URLs and comments with parameters and relations

adding URLs

searching for a URL

associative link
attributes

AbsoluteId method

Id method

IsOwnedBy method

Name method

attributes

B
beforeupdate event (reaction)

BodyFeature

box object

C
catalog

CellAsBoolean method

CellAsReal method

CellAsString method

chamfer object
check

creating

customizing check reports

information

performing a global analysis of checks

silent

using the check analysis tool

using the check editor

warning

check editor

CloserInfConfig method

CloserSupConfig method

CloserValueInfInColumn method

CloserValueSupInColumn method
command

add parameters on geometry

add set of parameters

add set of relations

check

check analysis toolbox

comment and URLs

design table

equivalent dimensions

get axis

get edge

get feature

get surface

insert file path

list

macros with arguments

parameters explorer

reactions

rule

set of equations

comments
conditional statement

if...else... else if

cone object

constantedgefillet object

constants

context keyword

controlling design tables synchronization

copy/paste a parameter

creating a check

creating a design table from a pre-existing file

creating a design table from the current parameter values

creating a formula

creating a knowledge advisor action
creating a knowledge advisor reaction

BeforeUpdate event

DragAndDrop event

filecontentmodification event

Insert Event

Inserted Event

Instantiation event

Remove Event

update event

ValueChange event

creating a law

creating a loop

creating a parameter

creating a powercopy containing a loop

creating a rule

creating and using a knowledge advisor law

creating points and lines as parameters

creating sets of parameters

creating sets of relations

customizing check reports

cylinder object

D
DBCS character

deactivating a component

declaring input data

defining the context
design table

adding a row to a design table external file

automatic synchronization at load

controlling synchronization

creating a design table from a pre-existing file

creating a design table from the current parameter values

functions

getting familiar with the design table dialog box

interactive synchronization at load

introducing

manual synchronization

storing a design table in a powercopy

useful tips

design table methods
dictionary

analysis operators

circle constructors

constants

design table methods

evaluate method

line constructors

list

mathematical functions

measures

operators

part measures

plane constructors

point constructors

surface constructors

wireframe constructors

draganddrop event (reaction)

E
equation editor

equivalent dimensions

Evaluate method
evaluate method

dictionary
event

BeforeUpdate

DragAndDrop

File Content Modification

Insert

Inserted

Instantiation

Remove

Update

ValueChange

F
file content modification event (reaction)
formula

creating a formula

getting familiar with the formula dialog box

introducing

referring to external parameters in a formula

specifying a measure in a formula

useful tips

from keyword

G
get axis command

get edge command

get feature command

get surface Command

GetAttribute method

GetAttributeInteger method

GetAttributeReal method

GetAttributeString method

getting familiar with the design table dialog box

getting familiar with the formula dialog box

getting started

using checks

using formulas

using parameters

using rules

GSMassemble object

GSMCurve Object

GSMCurvePar Object

GSMDirection Object

GSMExtrude Object

GSMFill Object

GSMFillet Object

GSMIntersect Object

GSMProject Object

GSMSplit Object

GSMSweep Object

H
HasAttribute method

how to mode

I
Id method

import keyword

importing a parameter

information check

insert event (reaction)

insert file path command

inserted event (reaction)

instantiating relations from a catalog

instantiation

instantiation event (reaction)

introducing design tables

introducing formulas

isa keyword

K
keyword

context

from

import

isa

publish

knowledge advisor menu bar
knowledge advisor toolbar

actions

add parameters on geometry

add set of parameters

add set of relations

check

comments and URLs

list

macros with arguments

measure update

parameters explorer

reactions

rule

set of equations

update
knowledge inspector

how to

what if

Knowledgeware Language
knowledgeware language

comments

temporary variables

units

L
launching a VB macro with arguments

LaunchMacroFromDoc function

LaunchMacrofromFile function

law

let keyword

link between measures and parameters

list

list edition window

LocateInColumn method

LocateInRow method
loop

action script structure

comments in the script

contextual menu

creating a loop

creating a powercopy containing a loop

declaring input data

defining the context

edition window

introducing

keywords

limitation

object properties

operators

packages contained in the browser

reference

roadmap

scripting language

useful tips

variables

M
mathematical functions

MaxInColumn method

measure

Message function

MinInColumn method

N
Name method

O
object

box

chamfer

cone

constantedgefillet

cylinder

GSMassemble

GSMCurve

GSMCurvePar

GSMDirection

GSMExtrude

GSMFill

GSMFillet

GSMIntersect

GSMLoft

GSMProject

GSMSplit

GSMSweep

hole

pad

pattern

shaft

simple hole

sphere

thicksurface

torus
object method

GetAttribute Boolean method

GetAttributeInteger method

GetAttributeReal method

GetAttributeString method

HasAttribute method

SetAttributeBoolean method

SetAttributeInteger method

SetAttributeReal method

SetAttributeString method

object method
operators

arithmetic operators

comparison operators

logical operators

P
pad object
parameter

activating and deactivating a component

applying ranges to a parameter by using a rule

copying/pasting a parameter

creating a link between measures and parameters

creating a parameter

creating points and lines as parameters

importing a parameter

publishing a parameter

specifying a parameter value as a measure

specifying the material parameter

using relations based on publications

part design features

part measures

pattern object

performing a global analysis of check

plane constructors

powercopy
powercopy

storing a design table

publish Keyword

publishing a parameter

Q
Query function

Question function

question mark in formulas

R
reaction

BeforeUpdate event

DragAndDrop event

File Content Modification event

Insert event

Inserted event

Instantiation event (Document Template)

Instantiation event (User Feature)

Remove event

Update event

using the reaction window

ValueChange event

working with the reaction

reaction

reference
reference

basic wireframe package

gsd package

Knowledge Expert

mechanical modeler

part design package

part shared package

referring to external parameters in a formula
relation

creating sets of relations

instantiating relations from a catalog

updating relations using measures

using relations based on publications (Product)

relation based on a publication

relations

relative path

remove event (reaction)
rule

creating

using rules and checks in a powercopy

using the rule editor

working with the rule feature

S
scripting language

searching for a URL

set of equations

SetAttributeBoolean method

SetAttributeInteger method

SetAttributeReal method

SetAttributeString method

SetCell method

shaft object

shell object

silent check

simple hole

solving a set of equations

specifying a measure in a formula

specifying the material parameter
standard toolbar

design table

equivalent dimensions

formula

knowledge inspector

law

lock/unlock parameters

storing a design table in a powercopy

surface constructors
system of three equations in three variables

solving the system of equations by a simulated annealing

solving the system of equations by the SetOfEquations capability

T
temporary variables

let keyword

thicksurface object

torus object

U
units

update (reaction)

updating relations using measures
use case

ball bearing

using equivalent dimensions

using rules and checks in a power copy

using the check analysis tool

using the check editor

using the dictionary

using the equation editor

using the list

using the list edition window

using the reaction window

using the rule editor

V
value change event (reaction)

VB macro

W
warning check

what if mode

wireframe constructors
workbench description

knowledge advisor menu bar

knowledge advisor toolbar

knowledge toolbar

working with the list feature

working with the Loop feature

working with the reaction feature

working with the rule feature

writing formulas

writing rules and checks

	Numbx:
	R:

	PageText:
	R:

	ProductName:
	L:

	Version:
	P1:
	Numbers:
	Numbx:
	R: 1

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P2:
	Numbers:
	Numbx:
	R: 2

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P3:
	Numbers:
	Numbx:
	R: 3

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P4:
	Numbers:
	Numbx:
	R: 4

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P5:
	Numbers:
	Numbx:
	R: 5

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P6:
	Numbers:
	Numbx:
	R: 6

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P7:
	Numbers:
	Numbx:
	R: 7

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P8:
	Numbers:
	Numbx:
	R: 8

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P9:
	Numbers:
	Numbx:
	R: 9

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P10:
	Numbers:
	Numbx:
	R: 10

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P11:
	Numbers:
	Numbx:
	R: 11

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P12:
	Numbers:
	Numbx:
	R: 12

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P13:
	Numbers:
	Numbx:
	R: 13

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P14:
	Numbers:
	Numbx:
	R: 14

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P15:
	Numbers:
	Numbx:
	R: 15

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P16:
	Numbers:
	Numbx:
	R: 16

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P17:
	Numbers:
	Numbx:
	R: 17

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P18:
	Numbers:
	Numbx:
	R: 18

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P19:
	Numbers:
	Numbx:
	R: 19

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P20:
	Numbers:
	Numbx:
	R: 20

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P21:
	Numbers:
	Numbx:
	R: 21

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P22:
	Numbers:
	Numbx:
	R: 22

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P23:
	Numbers:
	Numbx:
	R: 23

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P24:
	Numbers:
	Numbx:
	R: 24

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P25:
	Numbers:
	Numbx:
	R: 25

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P26:
	Numbers:
	Numbx:
	R: 26

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P27:
	Numbers:
	Numbx:
	R: 27

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P28:
	Numbers:
	Numbx:
	R: 28

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P29:
	Numbers:
	Numbx:
	R: 29

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P30:
	Numbers:
	Numbx:
	R: 30

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P31:
	Numbers:
	Numbx:
	R: 31

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P32:
	Numbers:
	Numbx:
	R: 32

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P33:
	Numbers:
	Numbx:
	R: 33

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P34:
	Numbers:
	Numbx:
	R: 34

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P35:
	Numbers:
	Numbx:
	R: 35

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P36:
	Numbers:
	Numbx:
	R: 36

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P37:
	Numbers:
	Numbx:
	R: 37

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P38:
	Numbers:
	Numbx:
	R: 38

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P39:
	Numbers:
	Numbx:
	R: 39

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P40:
	Numbers:
	Numbx:
	R: 40

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P41:
	Numbers:
	Numbx:
	R: 41

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P42:
	Numbers:
	Numbx:
	R: 42

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P43:
	Numbers:
	Numbx:
	R: 43

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P44:
	Numbers:
	Numbx:
	R: 44

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P45:
	Numbers:
	Numbx:
	R: 45

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P46:
	Numbers:
	Numbx:
	R: 46

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P47:
	Numbers:
	Numbx:
	R: 47

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P48:
	Numbers:
	Numbx:
	R: 48

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P49:
	Numbers:
	Numbx:
	R: 49

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P50:
	Numbers:
	Numbx:
	R: 50

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P51:
	Numbers:
	Numbx:
	R: 51

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P52:
	Numbers:
	Numbx:
	R: 52

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P53:
	Numbers:
	Numbx:
	R: 53

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P54:
	Numbers:
	Numbx:
	R: 54

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P55:
	Numbers:
	Numbx:
	R: 55

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P56:
	Numbers:
	Numbx:
	R: 56

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P57:
	Numbers:
	Numbx:
	R: 57

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P58:
	Numbers:
	Numbx:
	R: 58

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P59:
	Numbers:
	Numbx:
	R: 59

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P60:
	Numbers:
	Numbx:
	R: 60

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P61:
	Numbers:
	Numbx:
	R: 61

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P62:
	Numbers:
	Numbx:
	R: 62

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P63:
	Numbers:
	Numbx:
	R: 63

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P64:
	Numbers:
	Numbx:
	R: 64

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P65:
	Numbers:
	Numbx:
	R: 65

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P66:
	Numbers:
	Numbx:
	R: 66

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P67:
	Numbers:
	Numbx:
	R: 67

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P68:
	Numbers:
	Numbx:
	R: 68

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P69:
	Numbers:
	Numbx:
	R: 69

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P70:
	Numbers:
	Numbx:
	R: 70

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P71:
	Numbers:
	Numbx:
	R: 71

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P72:
	Numbers:
	Numbx:
	R: 72

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P73:
	Numbers:
	Numbx:
	R: 73

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P74:
	Numbers:
	Numbx:
	R: 74

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P75:
	Numbers:
	Numbx:
	R: 75

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P76:
	Numbers:
	Numbx:
	R: 76

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P77:
	Numbers:
	Numbx:
	R: 77

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P78:
	Numbers:
	Numbx:
	R: 78

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P79:
	Numbers:
	Numbx:
	R: 79

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P80:
	Numbers:
	Numbx:
	R: 80

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P81:
	Numbers:
	Numbx:
	R: 81

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P82:
	Numbers:
	Numbx:
	R: 82

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P83:
	Numbers:
	Numbx:
	R: 83

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P84:
	Numbers:
	Numbx:
	R: 84

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P85:
	Numbers:
	Numbx:
	R: 85

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P86:
	Numbers:
	Numbx:
	R: 86

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P87:
	Numbers:
	Numbx:
	R: 87

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P88:
	Numbers:
	Numbx:
	R: 88

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P89:
	Numbers:
	Numbx:
	R: 89

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P90:
	Numbers:
	Numbx:
	R: 90

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P91:
	Numbers:
	Numbx:
	R: 91

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P92:
	Numbers:
	Numbx:
	R: 92

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P93:
	Numbers:
	Numbx:
	R: 93

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P94:
	Numbers:
	Numbx:
	R: 94

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P95:
	Numbers:
	Numbx:
	R: 95

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P96:
	Numbers:
	Numbx:
	R: 96

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P97:
	Numbers:
	Numbx:
	R: 97

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P98:
	Numbers:
	Numbx:
	R: 98

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P99:
	Numbers:
	Numbx:
	R: 99

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P100:
	Numbers:
	Numbx:
	R: 100

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P101:
	Numbers:
	Numbx:
	R: 101

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P102:
	Numbers:
	Numbx:
	R: 102

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P103:
	Numbers:
	Numbx:
	R: 103

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P104:
	Numbers:
	Numbx:
	R: 104

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P105:
	Numbers:
	Numbx:
	R: 105

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P106:
	Numbers:
	Numbx:
	R: 106

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P107:
	Numbers:
	Numbx:
	R: 107

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P108:
	Numbers:
	Numbx:
	R: 108

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P109:
	Numbers:
	Numbx:
	R: 109

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P110:
	Numbers:
	Numbx:
	R: 110

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P111:
	Numbers:
	Numbx:
	R: 111

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P112:
	Numbers:
	Numbx:
	R: 112

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P113:
	Numbers:
	Numbx:
	R: 113

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P114:
	Numbers:
	Numbx:
	R: 114

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P115:
	Numbers:
	Numbx:
	R: 115

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P116:
	Numbers:
	Numbx:
	R: 116

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P117:
	Numbers:
	Numbx:
	R: 117

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P118:
	Numbers:
	Numbx:
	R: 118

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P119:
	Numbers:
	Numbx:
	R: 119

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P120:
	Numbers:
	Numbx:
	R: 120

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P121:
	Numbers:
	Numbx:
	R: 121

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P122:
	Numbers:
	Numbx:
	R: 122

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P123:
	Numbers:
	Numbx:
	R: 123

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P124:
	Numbers:
	Numbx:
	R: 124

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P125:
	Numbers:
	Numbx:
	R: 125

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P126:
	Numbers:
	Numbx:
	R: 126

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P127:
	Numbers:
	Numbx:
	R: 127

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P128:
	Numbers:
	Numbx:
	R: 128

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P129:
	Numbers:
	Numbx:
	R: 129

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P130:
	Numbers:
	Numbx:
	R: 130

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P131:
	Numbers:
	Numbx:
	R: 131

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P132:
	Numbers:
	Numbx:
	R: 132

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P133:
	Numbers:
	Numbx:
	R: 133

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P134:
	Numbers:
	Numbx:
	R: 134

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P135:
	Numbers:
	Numbx:
	R: 135

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P136:
	Numbers:
	Numbx:
	R: 136

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P137:
	Numbers:
	Numbx:
	R: 137

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P138:
	Numbers:
	Numbx:
	R: 138

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P139:
	Numbers:
	Numbx:
	R: 139

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P140:
	Numbers:
	Numbx:
	R: 140

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P141:
	Numbers:
	Numbx:
	R: 141

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P142:
	Numbers:
	Numbx:
	R: 142

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P143:
	Numbers:
	Numbx:
	R: 143

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P144:
	Numbers:
	Numbx:
	R: 144

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P145:
	Numbers:
	Numbx:
	R: 145

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P146:
	Numbers:
	Numbx:
	R: 146

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P147:
	Numbers:
	Numbx:
	R: 147

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P148:
	Numbers:
	Numbx:
	R: 148

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P149:
	Numbers:
	Numbx:
	R: 149

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P150:
	Numbers:
	Numbx:
	R: 150

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P151:
	Numbers:
	Numbx:
	R: 151

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P152:
	Numbers:
	Numbx:
	R: 152

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P153:
	Numbers:
	Numbx:
	R: 153

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P154:
	Numbers:
	Numbx:
	R: 154

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P155:
	Numbers:
	Numbx:
	R: 155

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P156:
	Numbers:
	Numbx:
	R: 156

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P157:
	Numbers:
	Numbx:
	R: 157

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P158:
	Numbers:
	Numbx:
	R: 158

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P159:
	Numbers:
	Numbx:
	R: 159

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P160:
	Numbers:
	Numbx:
	R: 160

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P161:
	Numbers:
	Numbx:
	R: 161

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P162:
	Numbers:
	Numbx:
	R: 162

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P163:
	Numbers:
	Numbx:
	R: 163

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P164:
	Numbers:
	Numbx:
	R: 164

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P165:
	Numbers:
	Numbx:
	R: 165

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P166:
	Numbers:
	Numbx:
	R: 166

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P167:
	Numbers:
	Numbx:
	R: 167

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P168:
	Numbers:
	Numbx:
	R: 168

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P169:
	Numbers:
	Numbx:
	R: 169

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P170:
	Numbers:
	Numbx:
	R: 170

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P171:
	Numbers:
	Numbx:
	R: 171

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P172:
	Numbers:
	Numbx:
	R: 172

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P173:
	Numbers:
	Numbx:
	R: 173

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P174:
	Numbers:
	Numbx:
	R: 174

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P175:
	Numbers:
	Numbx:
	R: 175

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P176:
	Numbers:
	Numbx:
	R: 176

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P177:
	Numbers:
	Numbx:
	R: 177

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P178:
	Numbers:
	Numbx:
	R: 178

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P179:
	Numbers:
	Numbx:
	R: 179

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P180:
	Numbers:
	Numbx:
	R: 180

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P181:
	Numbers:
	Numbx:
	R: 181

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P182:
	Numbers:
	Numbx:
	R: 182

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P183:
	Numbers:
	Numbx:
	R: 183

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P184:
	Numbers:
	Numbx:
	R: 184

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P185:
	Numbers:
	Numbx:
	R: 185

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P186:
	Numbers:
	Numbx:
	R: 186

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P187:
	Numbers:
	Numbx:
	R: 187

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P188:
	Numbers:
	Numbx:
	R: 188

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P189:
	Numbers:
	Numbx:
	R: 189

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P190:
	Numbers:
	Numbx:
	R: 190

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P191:
	Numbers:
	Numbx:
	R: 191

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P192:
	Numbers:
	Numbx:
	R: 192

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P193:
	Numbers:
	Numbx:
	R: 193

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P194:
	Numbers:
	Numbx:
	R: 194

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P195:
	Numbers:
	Numbx:
	R: 195

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P196:
	Numbers:
	Numbx:
	R: 196

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P197:
	Numbers:
	Numbx:
	R: 197

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P198:
	Numbers:
	Numbx:
	R: 198

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P199:
	Numbers:
	Numbx:
	R: 199

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P200:
	Numbers:
	Numbx:
	R: 200

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P201:
	Numbers:
	Numbx:
	R: 201

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P202:
	Numbers:
	Numbx:
	R: 202

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P203:
	Numbers:
	Numbx:
	R: 203

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P204:
	Numbers:
	Numbx:
	R: 204

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P205:
	Numbers:
	Numbx:
	R: 205

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P206:
	Numbers:
	Numbx:
	R: 206

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P207:
	Numbers:
	Numbx:
	R: 207

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P208:
	Numbers:
	Numbx:
	R: 208

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P209:
	Numbers:
	Numbx:
	R: 209

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P210:
	Numbers:
	Numbx:
	R: 210

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P211:
	Numbers:
	Numbx:
	R: 211

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P212:
	Numbers:
	Numbx:
	R: 212

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P213:
	Numbers:
	Numbx:
	R: 213

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P214:
	Numbers:
	Numbx:
	R: 214

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P215:
	Numbers:
	Numbx:
	R: 215

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P216:
	Numbers:
	Numbx:
	R: 216

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P217:
	Numbers:
	Numbx:
	R: 217

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P218:
	Numbers:
	Numbx:
	R: 218

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P219:
	Numbers:
	Numbx:
	R: 219

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P220:
	Numbers:
	Numbx:
	R: 220

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P221:
	Numbers:
	Numbx:
	R: 221

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P222:
	Numbers:
	Numbx:
	R: 222

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P223:
	Numbers:
	Numbx:
	R: 223

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P224:
	Numbers:
	Numbx:
	R: 224

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P225:
	Numbers:
	Numbx:
	R: 225

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P226:
	Numbers:
	Numbx:
	R: 226

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P227:
	Numbers:
	Numbx:
	R: 227

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P228:
	Numbers:
	Numbx:
	R: 228

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P229:
	Numbers:
	Numbx:
	R: 229

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P230:
	Numbers:
	Numbx:
	R: 230

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P231:
	Numbers:
	Numbx:
	R: 231

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P232:
	Numbers:
	Numbx:
	R: 232

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P233:
	Numbers:
	Numbx:
	R: 233

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P234:
	Numbers:
	Numbx:
	R: 234

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P235:
	Numbers:
	Numbx:
	R: 235

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P236:
	Numbers:
	Numbx:
	R: 236

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P237:
	Numbers:
	Numbx:
	R: 237

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P238:
	Numbers:
	Numbx:
	R: 238

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P239:
	Numbers:
	Numbx:
	R: 239

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P240:
	Numbers:
	Numbx:
	R: 240

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P241:
	Numbers:
	Numbx:
	R: 241

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P242:
	Numbers:
	Numbx:
	R: 242

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P243:
	Numbers:
	Numbx:
	R: 243

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P244:
	Numbers:
	Numbx:
	R: 244

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P245:
	Numbers:
	Numbx:
	R: 245

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P246:
	Numbers:
	Numbx:
	R: 246

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P247:
	Numbers:
	Numbx:
	R: 247

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P248:
	Numbers:
	Numbx:
	R: 248

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P249:
	Numbers:
	Numbx:
	R: 249

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P250:
	Numbers:
	Numbx:
	R: 250

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P251:
	Numbers:
	Numbx:
	R: 251

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P252:
	Numbers:
	Numbx:
	R: 252

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P253:
	Numbers:
	Numbx:
	R: 253

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P254:
	Numbers:
	Numbx:
	R: 254

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P255:
	Numbers:
	Numbx:
	R: 255

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P256:
	Numbers:
	Numbx:
	R: 256

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P257:
	Numbers:
	Numbx:
	R: 257

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P258:
	Numbers:
	Numbx:
	R: 258

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P259:
	Numbers:
	Numbx:
	R: 259

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P260:
	Numbers:
	Numbx:
	R: 260

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P261:
	Numbers:
	Numbx:
	R: 261

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P262:
	Numbers:
	Numbx:
	R: 262

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P263:
	Numbers:
	Numbx:
	R: 263

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P264:
	Numbers:
	Numbx:
	R: 264

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P265:
	Numbers:
	Numbx:
	R: 265

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P266:
	Numbers:
	Numbx:
	R: 266

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P267:
	Numbers:
	Numbx:
	R: 267

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P268:
	Numbers:
	Numbx:
	R: 268

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P269:
	Numbers:
	Numbx:
	R: 269

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P270:
	Numbers:
	Numbx:
	R: 270

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P271:
	Numbers:
	Numbx:
	R: 271

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P272:
	Numbers:
	Numbx:
	R: 272

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P273:
	Numbers:
	Numbx:
	R: 273

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P274:
	Numbers:
	Numbx:
	R: 274

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P275:
	Numbers:
	Numbx:
	R: 275

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P276:
	Numbers:
	Numbx:
	R: 276

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P277:
	Numbers:
	Numbx:
	R: 277

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P278:
	Numbers:
	Numbx:
	R: 278

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P279:
	Numbers:
	Numbx:
	R: 279

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P280:
	Numbers:
	Numbx:
	R: 280

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P281:
	Numbers:
	Numbx:
	R: 281

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P282:
	Numbers:
	Numbx:
	R: 282

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P283:
	Numbers:
	Numbx:
	R: 283

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P284:
	Numbers:
	Numbx:
	R: 284

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P285:
	Numbers:
	Numbx:
	R: 285

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P286:
	Numbers:
	Numbx:
	R: 286

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P287:
	Numbers:
	Numbx:
	R: 287

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P288:
	Numbers:
	Numbx:
	R: 288

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P289:
	Numbers:
	Numbx:
	R: 289

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P290:
	Numbers:
	Numbx:
	R: 290

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P291:
	Numbers:
	Numbx:
	R: 291

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P292:
	Numbers:
	Numbx:
	R: 292

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P293:
	Numbers:
	Numbx:
	R: 293

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P294:
	Numbers:
	Numbx:
	R: 294

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P295:
	Numbers:
	Numbx:
	R: 295

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P296:
	Numbers:
	Numbx:
	R: 296

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P297:
	Numbers:
	Numbx:
	R: 297

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P298:
	Numbers:
	Numbx:
	R: 298

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P299:
	Numbers:
	Numbx:
	R: 299

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P300:
	Numbers:
	Numbx:
	R: 300

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P301:
	Numbers:
	Numbx:
	R: 301

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P302:
	Numbers:
	Numbx:
	R: 302

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P303:
	Numbers:
	Numbx:
	R: 303

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P304:
	Numbers:
	Numbx:
	R: 304

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P305:
	Numbers:
	Numbx:
	R: 305

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P306:
	Numbers:
	Numbx:
	R: 306

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P307:
	Numbers:
	Numbx:
	R: 307

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P308:
	Numbers:
	Numbx:
	R: 308

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P309:
	Numbers:
	Numbx:
	R: 309

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P310:
	Numbers:
	Numbx:
	R: 310

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P311:
	Numbers:
	Numbx:
	R: 311

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P312:
	Numbers:
	Numbx:
	R: 312

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P313:
	Numbers:
	Numbx:
	R: 313

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P314:
	Numbers:
	Numbx:
	R: 314

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P315:
	Numbers:
	Numbx:
	R: 315

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P316:
	Numbers:
	Numbx:
	R: 316

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P317:
	Numbers:
	Numbx:
	R: 317

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P318:
	Numbers:
	Numbx:
	R: 318

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P319:
	Numbers:
	Numbx:
	R: 319

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P320:
	Numbers:
	Numbx:
	R: 320

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P321:
	Numbers:
	Numbx:
	R: 321

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P322:
	Numbers:
	Numbx:
	R: 322

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P323:
	Numbers:
	Numbx:
	R: 323

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P324:
	Numbers:
	Numbx:
	R: 324

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P325:
	Numbers:
	Numbx:
	R: 325

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P326:
	Numbers:
	Numbx:
	R: 326

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P327:
	Numbers:
	Numbx:
	R: 327

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P328:
	Numbers:
	Numbx:
	R: 328

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P329:
	Numbers:
	Numbx:
	R: 329

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P330:
	Numbers:
	Numbx:
	R: 330

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P331:
	Numbers:
	Numbx:
	R: 331

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P332:
	Numbers:
	Numbx:
	R: 332

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P333:
	Numbers:
	Numbx:
	R: 333

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P334:
	Numbers:
	Numbx:
	R: 334

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P335:
	Numbers:
	Numbx:
	R: 335

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P336:
	Numbers:
	Numbx:
	R: 336

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P337:
	Numbers:
	Numbx:
	R: 337

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P338:
	Numbers:
	Numbx:
	R: 338

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P339:
	Numbers:
	Numbx:
	R: 339

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P340:
	Numbers:
	Numbx:
	R: 340

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P341:
	Numbers:
	Numbx:
	R: 341

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P342:
	Numbers:
	Numbx:
	R: 342

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P343:
	Numbers:
	Numbx:
	R: 343

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P344:
	Numbers:
	Numbx:
	R: 344

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P345:
	Numbers:
	Numbx:
	R: 345

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P346:
	Numbers:
	Numbx:
	R: 346

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P347:
	Numbers:
	Numbx:
	R: 347

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P348:
	Numbers:
	Numbx:
	R: 348

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P349:
	Numbers:
	Numbx:
	R: 349

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P350:
	Numbers:
	Numbx:
	R: 350

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P351:
	Numbers:
	Numbx:
	R: 351

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P352:
	Numbers:
	Numbx:
	R: 352

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P353:
	Numbers:
	Numbx:
	R: 353

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P354:
	Numbers:
	Numbx:
	R: 354

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P355:
	Numbers:
	Numbx:
	R: 355

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P356:
	Numbers:
	Numbx:
	R: 356

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P357:
	Numbers:
	Numbx:
	R: 357

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P358:
	Numbers:
	Numbx:
	R: 358

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P359:
	Numbers:
	Numbx:
	R: 359

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P360:
	Numbers:
	Numbx:
	R: 360

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P361:
	Numbers:
	Numbx:
	R: 361

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P362:
	Numbers:
	Numbx:
	R: 362

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P363:
	Numbers:
	Numbx:
	R: 363

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P364:
	Numbers:
	Numbx:
	R: 364

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P365:
	Numbers:
	Numbx:
	R: 365

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P366:
	Numbers:
	Numbx:
	R: 366

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P367:
	Numbers:
	Numbx:
	R: 367

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P368:
	Numbers:
	Numbx:
	R: 368

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P369:
	Numbers:
	Numbx:
	R: 369

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P370:
	Numbers:
	Numbx:
	R: 370

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P371:
	Numbers:
	Numbx:
	R: 371

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P372:
	Numbers:
	Numbx:
	R: 372

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P373:
	Numbers:
	Numbx:
	R: 373

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P374:
	Numbers:
	Numbx:
	R: 374

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P375:
	Numbers:
	Numbx:
	R: 375

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P376:
	Numbers:
	Numbx:
	R: 376

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P377:
	Numbers:
	Numbx:
	R: 377

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P378:
	Numbers:
	Numbx:
	R: 378

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P379:
	Numbers:
	Numbx:
	R: 379

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P380:
	Numbers:
	Numbx:
	R: 380

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P381:
	Numbers:
	Numbx:
	R: 381

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P382:
	Numbers:
	Numbx:
	R: 382

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P383:
	Numbers:
	Numbx:
	R: 383

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P384:
	Numbers:
	Numbx:
	R: 384

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P385:
	Numbers:
	Numbx:
	R: 385

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P386:
	Numbers:
	Numbx:
	R: 386

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P387:
	Numbers:
	Numbx:
	R: 387

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P388:
	Numbers:
	Numbx:
	R: 388

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P389:
	Numbers:
	Numbx:
	R: 389

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P390:
	Numbers:
	Numbx:
	R: 390

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P391:
	Numbers:
	Numbx:
	R: 391

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P392:
	Numbers:
	Numbx:
	R: 392

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P393:
	Numbers:
	Numbx:
	R: 393

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P394:
	Numbers:
	Numbx:
	R: 394

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P395:
	Numbers:
	Numbx:
	R: 395

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P396:
	Numbers:
	Numbx:
	R: 396

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P397:
	Numbers:
	Numbx:
	R: 397

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P398:
	Numbers:
	Numbx:
	R: 398

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P399:
	Numbers:
	Numbx:
	R: 399

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P400:
	Numbers:
	Numbx:
	R: 400

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P401:
	Numbers:
	Numbx:
	R: 401

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P402:
	Numbers:
	Numbx:
	R: 402

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P403:
	Numbers:
	Numbx:
	R: 403

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P404:
	Numbers:
	Numbx:
	R: 404

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P405:
	Numbers:
	Numbx:
	R: 405

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P406:
	Numbers:
	Numbx:
	R: 406

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P407:
	Numbers:
	Numbx:
	R: 407

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P408:
	Numbers:
	Numbx:
	R: 408

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P409:
	Numbers:
	Numbx:
	R: 409

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P410:
	Numbers:
	Numbx:
	R: 410

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P411:
	Numbers:
	Numbx:
	R: 411

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P412:
	Numbers:
	Numbx:
	R: 412

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P413:
	Numbers:
	Numbx:
	R: 413

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P414:
	Numbers:
	Numbx:
	R: 414

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P415:
	Numbers:
	Numbx:
	R: 415

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P416:
	Numbers:
	Numbx:
	R: 416

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P417:
	Numbers:
	Numbx:
	R: 417

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P418:
	Numbers:
	Numbx:
	R: 418

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P419:
	Numbers:
	Numbx:
	R: 419

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P420:
	Numbers:
	Numbx:
	R: 420

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P421:
	Numbers:
	Numbx:
	R: 421

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P422:
	Numbers:
	Numbx:
	R: 422

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P423:
	Numbers:
	Numbx:
	R: 423

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P424:
	Numbers:
	Numbx:
	R: 424

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P425:
	Numbers:
	Numbx:
	R: 425

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P426:
	Numbers:
	Numbx:
	R: 426

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P427:
	Numbers:
	Numbx:
	R: 427

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P428:
	Numbers:
	Numbx:
	R: 428

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P429:
	Numbers:
	Numbx:
	R: 429

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P430:
	Numbers:
	Numbx:
	R: 430

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P431:
	Numbers:
	Numbx:
	R: 431

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

	P432:
	Numbers:
	Numbx:
	R: 432

	PageText:
	R: Page

	ProductName:
	L: Knowledge Advisor

	Version: Version 5 Release 12

